
Database Toolbox™ 3
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Database Toolbox™ User’s Guide

© COPYRIGHT 1998–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
May 1998 Online Only New for Version 1 for MATLAB® 5.2
July 1998 First Printing For Version 1
Online only June 1999 Revised for Version 2 (Release 11)
December 1999 Second printing For Version 2 (Release 11)
Online only September 2000 Revised for Version 2.1 (Release 12)
June 2001 Third printing Revised for Version 2.2 (Release 12.1)
July 2002 Online only Revised for Version 2.2.1 (Release 13)
November 2002 Fourth printing Version 2.2.1
June 2004 Fifth printing Revised for Version 3.0 (Release 14)
October 2004 Online only Revised for Version 3.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.0.2 (Release 14SP2)
September 2005 Online only Revised for Version 3.1 (Release 14SP3)
March 2006 Online only Revised for Version 3.1.1 (Release 2006a)
September 2006 Online only Revised for Version 3.2 (Release 2006b)
October 2006 Sixth printing Revised for Version 3.2 (Release 2006b)
March 2007 Online only Revised for Version 3.3 (Release 2007a)
September 2007 Seventh printing Revised for Version 3.4 (Release 2007b)
March 2008 Online only Revised for Version 3.4.1 (Release 2008a)
October 2008 Online only Revised for Version 3.5 (Release 2008b)
March 2009 Online only Revised for Version 3.5.1 (Release 2009a)
September 2009 Online only Revised for Version 3.6 (Release 2009b)

Contents

Before You Begin

1
Working with Databases . 1-2
Connecting to Databases . 1-2
Supported Platforms . 1-2
Supported Databases . 1-2
Supported Drivers . 1-3
Structured Query Language (SQL) 1-3

Supported Data Types . 1-4

Data Retrieval Restrictions . 1-6
Spaces in Table Names or Column Names 1-6
Quotation Marks in Table Names or Column Names 1-6
Reserved Words in Column Names 1-6

Working with Data Sources

2
Setting up ODBC Data Sources . 2-2

Setting up JDBC Data Sources . 2-3

Accessing Existing JDBC Data Sources 2-4

Modifying Existing JDBC Data Sources 2-5

Removing JDBC Data Sources . 2-6

Troubleshooting JDBC Driver Problems 2-7

v

Database Toolbox Functions vs. Visual Query
Builder

3
When to Use Visual Query Builder 3-2
Tasks You Can Perform Using Visual Query Builder 3-2
Limitations of Visual Query Builder 3-2

When to Use Database Toolbox Functions 3-3

Using Visual Query Builder

4
Getting Started with Visual Query Builder 4-2
What Is Visual Query Builder? . 4-2
Using Queries to Import Data . 4-2
Using Queries to Export Data . 4-4

Working with Preferences . 4-6
Specifying Preferences . 4-6
Saving Preferences . 4-9

Displaying Query Results . 4-10
How to Display Query Results . 4-10
Displaying Data Relationally . 4-10
Charting Query Results . 4-14
Displaying Query Results in an HTML Report 4-16
Using the MATLAB® Report Generator Software to
Customize Display of Query Results 4-17

Fine-Tuning Queries Using Advanced Query
Options . 4-22
Retrieving All Occurrences vs. Unique Occurrences of
Data . 4-22

Retrieving Data That Meets Specified Criteria 4-24
Grouping Statements . 4-27
Displaying Results in a Specified Order 4-31
Using Having Clauses To Refine Group By Results 4-34

vi Contents

Creating Subqueries for Values from Multiple Tables 4-37
Creating Queries That Include Results from Multiple
Tables . 4-42

Additional Advanced Query Options 4-45

Retrieving BINARY and OTHER Sun Java Data
Types . 4-46

Importing and Exporting BOOLEAN Data 4-48
Importing BOOLEAN Data from Databases to the MATLAB
Workspace . 4-48

Exporting BOOLEAN Data from the MATLAB Workspace
to Databases . 4-51

Saving Queries in M-Files . 4-52
About Generated M-Files . 4-52
VQB Query Elements in M-Files . 4-53

Using Database Toolbox Functions

5
Getting Started with Database Toolbox Functions 5-2

Importing Data from Databases into the MATLAB
Workspace . 5-3

Viewing Information About Imported Data 5-9

Exporting Data from the MATLAB Workspace to a New
Record in a Database . 5-11

Replacing Existing Data in Databases with Data
Exported from the MATLAB Workspace 5-15

Exporting Multiple Records from the MATLAB
Workspace . 5-17

vii

Retrieving BINARY or OTHER Sun Java SQL Data
Types . 5-21

Working with Database Metadata 5-23
Accessing Metadata . 5-23
Resultset Metadata Objects . 5-28

Using Driver Functions . 5-29

About Objects and Methods in the Database Toolbox
Software . 5-31

Function Reference

6
Utilities . 6-2

Database Connection . 6-2

SQL Cursor . 6-3

Data Import . 6-3

Database Metadata Object . 6-4

Data Export . 6-5

Driver Object . 6-5

Drivermanager Object . 6-6

Resultset Object . 6-6

Resultset Metadata Object . 6-6

viii Contents

Visual Query Builder . 6-7

Functions — Alphabetical List

7

Examples

A
Visual Query Builder GUI: Importing Data A-2

Visual Query Builder GUI: Displaying Results A-2

Visual Query Builder GUI: Advanced Query Options . . A-2

Visual Query Builder GUI: Exporting Data A-2

Using Database Toolbox Functions A-2

Index

ix

x Contents

1

Before You Begin

• “Working with Databases” on page 1-2

• “Supported Data Types” on page 1-4

• “Data Retrieval Restrictions” on page 1-6

1 Before You Begin

Working with Databases

In this section...

“Connecting to Databases” on page 1-2

“Supported Platforms” on page 1-2

“Supported Databases” on page 1-2

“Supported Drivers” on page 1-3

“Structured Query Language (SQL)” on page 1-3

Connecting to Databases
Before you can use this toolbox to connect to a database, you must set up data
sources. For more information, see “Configuring Your Environment” in the
Database Toolbox™ Getting Started Guide.

Supported Platforms
This toolbox runs on all platforms that the MATLAB® software supports.

For more information, see Database Toolbox system requirements at
http://www.mathworks.com/products/database/requirements.html.

Note This toolbox does not support running MATLAB software sessions with
the -nojvm startup option enabled on UNIX® platforms. (UNIX is a registered
trademark of the Open Group in the United States and other countries.)

Supported Databases
This toolbox supports importing and exporting data from any ODBC- and/or
JDBC-compliant database management system, including:

1-2

http://www.mathworks.com/products/database/requirements.html

Working with Databases

• IBM DB2®

• IBM® Informix®

• Ingres®

• Microsoft® Access™

• Microsoft® Excel®

• Microsoft® SQL Server™

• MySQL®

• Oracle®

• Postgre SQL (Postgres)

• Sybase® SQL Anywhere®

• Sybase SQL Server®

If you are upgrading an earlier version of a database, you need not do
anything special for this toolbox. Simply configure the data sources for the
new version of the database application as you did for the original version.

Supported Drivers
This toolbox requires a database driver. Typically, you install a driver when
you install a database. For instructions about how to install a database
driver, consult your database administrator.

On Microsoft® Windows® platforms, the toolbox supports Open Database
Connectivity (ODBC) drivers and Sun™ Java™ Database Connectivity
(JDBC) drivers.

On UNIX platforms, the toolbox supports Java Database Connectivity
(JDBC) drivers. If your database does not ship with JDBC
drivers, download drivers from the Sun JDBC Web Site at
http://industry.java.sun.com/products/jdbc/drivers.

Structured Query Language (SQL)
This toolbox supports American National Standards Institute (ANSI)
standard SQL commands.

1-3

http://industry.java.sun.com/products/jdbc/drivers

1 Before You Begin

Supported Data Types
You can import the following data types into the MATLAB workspace and
export them back to your database:

• BOOLEAN

• CHAR

• DATE

• DECIMAL

• DOUBLE

• FLOAT

• INTEGER

• LONGCHAR

• NUMERIC

• REAL

• SMALLINT

• TIME

• TIMESTAMP

• TINYINT

Note The Database Toolbox software interprets this data type as BOOLEAN
and imports it into the MATLAB workspace as logical true (1) or false
(0). For more information about how the Database Toolbox software
handles BOOLEAN data, see “Importing and Exporting BOOLEAN Data”
on page 4-48.

• VARCHAR

• NTEXT

1-4

Supported Data Types

You can import data of types not included in this list into the MATLAB
workspace. However, you may need to manipulate such data before you can
process it in MATLAB.

1-5

1 Before You Begin

Data Retrieval Restrictions

In this section...

“Spaces in Table Names or Column Names” on page 1-6

“Quotation Marks in Table Names or Column Names” on page 1-6

“Reserved Words in Column Names” on page 1-6

Spaces in Table Names or Column Names
Microsoft Access supports the use of spaces in table and column names, but
most other databases do not. Queries that retrieve data from tables and fields
whose names contain spaces require delimiters around table names and field
names. In Access™, enclose the table names or field names in quotation
marks, for example, "order id". Other databases use different delimiters,
such as brackets, []. In Visual Query Builder, table names and field names
that include spaces appear in quotation marks.

Quotation Marks in Table Names or Column Names
Do not include quotation marks in table names or column names. The
Database Toolbox software does not support data retrieval from table and
column names that contain quotation marks.

Reserved Words in Column Names
You cannot use the Database Toolbox software to import or export data in
columns whose names contain database reserved words, such as DATE or
TABLE.

1-6

2

Working with Data Sources

• “Setting up ODBC Data Sources” on page 2-2

• “Setting up JDBC Data Sources” on page 2-3

• “Accessing Existing JDBC Data Sources” on page 2-4

• “Modifying Existing JDBC Data Sources” on page 2-5

• “Removing JDBC Data Sources” on page 2-6

• “Troubleshooting JDBC Driver Problems” on page 2-7

2 Working with Data Sources

Setting up ODBC Data Sources
For instructions on setting up ODBC data sources, see “Setting Up Data
Sources for Use with ODBC Drivers” in the Database ToolboxGetting Started
Guide.

2-2

Setting up JDBC Data Sources

Setting up JDBC Data Sources
For instructions on setting up JDBC data sources, see “Setting Up Data
Sources for Use with JDBC Drivers” in the Database ToolboxGetting Started
Guide.

2-3

2 Working with Data Sources

Accessing Existing JDBC Data Sources
To access an existing data source from Visual Query Builder in future
MATLAB software sessions:

1 In Visual Query Builder, select Query > Define JDBC data source.

2 In the Define JDBC data sources dialog box, click Use Existing File.

3 In the Specify Existing JDBC data source MAT-file dialog box, select the
MAT-file that contains the data sources you want to use and click Open.

The data sources in the selected MAT-file appear in the Define JDBC data
sources dialog box.

4 Click OK to close the Define JDBC data sources dialog box. The data
sources now appear in the Visual Query Builder Data source list.

2-4

Modifying Existing JDBC Data Sources

Modifying Existing JDBC Data Sources
1 Access the existing data source as described in “Accessing Existing JDBC
Data Sources” on page 2-4.

2 Select the data source in the Define JDBC Data Sources dialog box.

3 Modify the data in the Driver and URL fields.

4 Click Add/Update.

5 Click OK to save your changes and close the Define JDBC data sources
dialog box.

2-5

2 Working with Data Sources

Removing JDBC Data Sources
1 Access the existing data source as described in “Accessing Existing JDBC
Data Sources” on page 2-4.

2 Click Remove.

3 Click OK to save your changes and close the Define JDBC data sources
dialog box.

2-6

Troubleshooting JDBC Driver Problems

Troubleshooting JDBC Driver Problems
This section describes how to address common data source access problems,
in which selecting a data source in the Visual Query Builder list produces
an error, or the data source is not in the list as expected. There are several
potential causes for these issues:

• The database is unavailable, or there are connectivity problems. Try
reselecting the data source in VQB. If you are still unable to access the
data source, contact your database administrator.

• You ran the clear all command in the MATLAB Command Window after
you defined a JDBC data source. In this case, redefine the data source by
following the instructions in “Setting Up Data Sources for Use with JDBC
Drivers” in the Database Toolbox Getting Started Guide.

2-7

2 Working with Data Sources

2-8

3

Database Toolbox Functions
vs. Visual Query Builder

• “When to Use Visual Query Builder” on page 3-2

• “When to Use Database Toolbox Functions” on page 3-3

3 Database Toolbox™ Functions vs. Visual Query Builder

When to Use Visual Query Builder

In this section...

“Tasks You Can Perform Using Visual Query Builder” on page 3-2

“Limitations of Visual Query Builder” on page 3-2

Tasks You Can Perform Using Visual Query Builder
You can use Visual Query Builder to:

• Import data from relational databases into the MATLAB workspace by
selecting information from lists to build queries.

• Display retrieved information in relational tables, reports, and charts.

• Export data from the MATLAB workspace into new records in a database.

• Easily build SQL queries and exchange data between databases and the
MATLAB workspace.

• View and edit SQL statements for queries generated with VQB.

• Automatically generate a MATLAB M-file that consists of Database
Toolbox functions that perform queries you built using VQB.

Limitations of Visual Query Builder

• You cannot use Visual Query Builder to replace existing data in a database
with data from the MATLAB workspace. Use the update function instead.

• You cannot use Visual Query Builder to export binary data. Instead, use
the fastinsert function.

3-2

When to Use Database Toolbox™ Functions

When to Use Database Toolbox Functions
Database Toolbox functions can do everything that Visual Query Builder can,
and more. You can use these functions to:

• Replace existing records in databases with data from the MATLAB
workspace.

• Retrieve large data sets or partial data sets in a single fetch command, or
in discrete amounts using multiple fetches.

• Dynamically import data into the MATLAB workspace.

• Modify SQL queries in MATLAB statements.

• Write MATLAB M-files and applications that access databases.

• Perform other functions that are not available with Visual Query Builder,
including:

- Exporting binary data or other data types that you can import into the
MATLAB workspace, but cannot export from the MATLAB workspace
using VQB.

- Accessing database metadata.

3-3

3 Database Toolbox™ Functions vs. Visual Query Builder

3-4

4

Using Visual Query Builder

• “Getting Started with Visual Query Builder” on page 4-2

• “Working with Preferences” on page 4-6

• “Displaying Query Results” on page 4-10

• “Fine-Tuning Queries Using Advanced Query Options” on page 4-22

• “Retrieving BINARY and OTHER Sun Java Data Types” on page 4-46

• “Importing and Exporting BOOLEAN Data” on page 4-48

• “Saving Queries in M-Files” on page 4-52

4 Using Visual Query Builder

Getting Started with Visual Query Builder

In this section...

“What Is Visual Query Builder?” on page 4-2

“Using Queries to Import Data” on page 4-2

“Using Queries to Export Data” on page 4-4

What Is Visual Query Builder?
Visual Query Builder (VQB) is an easy-to-use graphical user interface (GUI)
for exchanging data with your database. You can use VQB to:

• Build queries to retrieve data by selecting information from lists instead of
using MATLAB functions.

• Store data retrieved from a database in a MATLAB cell array, structure, or
numeric matrix.

• Process the retrieved data using the MATLAB suite of functions.

• Display retrieved information in relational tables, reports, and charts.

• Export data from the MATLAB workspace into new rows in a database.

Using Queries to Import Data
The following steps summarize how to use VQB to import data.

4-2

Getting Started with Visual Query Builder

��������	
���

���

���
������

��
������
������� ��
������
	���

�������

��
������

�������

��
������

����	�
��

����������� ����
�����
�������
��
�����

�!���
��	
�����
���"����

�� #�����$����%
��
����
�����
�������
��
&'()'*
'����
+	�����

, ���
����������
���
	���
����������

�- ����
���	
��	
���
�������
��	
.�������
&$������

/ ������
������

0 ����
�1)
�����"����

2�
'���.�
��������
���
��������

(�
�����
�!�
������
1����
*���	��
���
��������	
��
��
�!�
&'()'*
��"��

-

������

������.

��	
��!�"��

For a step-by-step example of how to use queries to import data into the
MATLAB workspace from a database, see “Using Queries to Import Database

4-3

4 Using Visual Query Builder

Data into the MATLAB Workspace” in the Database Toolbox Getting Started
Guide.

Using Queries to Export Data
The following steps summarize how to use VQB to export data.

4-4

Getting Started with Visual Query Builder

��������	
���

,�

���
������

��
������
��	�
�� ��
������
	���

�������

��
������

�������

��
������
����	�

��
�!��!
��

�3���
	����

2 ����
���	
��	
���
�������
���
����������
���
�3�����.
45))�
��	
.�������
&$������

0 ����
&'()'*
�����"����

/� ������
��������
���������.
	���
��
�3����

(�
�����
�!�
������
1����
*���	��
���
��������	
��
��
�!�
&'()'*
��"��

-

������

������.

��	
��!�"��

For a step-by-step example of how to use queries to export data from the
MATLAB workspace to a database, see “Using Queries to Export MATLAB
Workspace Data to a Database” in the Database Toolbox Getting Started
Guide.

4-5

4 Using Visual Query Builder

Working with Preferences

In this section...

“Specifying Preferences” on page 4-6

“Saving Preferences” on page 4-9

Specifying Preferences
This section describes how to set VQB preferences to specify:

• How NULL data in a database is represented after you import it into the
MATLAB workspace

• The format of data retrieved from databases

• The method of error notification

1 Click Query > Preferences. The Preferences dialog box appears.

4-6

Working with Preferences

4-7

4 Using Visual Query Builder

2 Specify the Preferences settings as described in the following table.

Preference Value Description

Read
NULL
numbers
as

0 If you accept the default value for this field, NULL data imported
from databases into the MATLAB workspace appears as NaN.
Setting this field to 0 causes NULL data imported into the
MATLAB workspace to appear as 0s.

Data
return
format

numeric Select a data format based on the type of data you are importing,
memory considerations, and your preferred method of working
with retrieved data.

Cell arrays and structures support mixed data types, but require
more memory and process more slowly than numeric matrices.
Select numeric if:

• The data you are retrieving is numeric, or

• You need to convert nonnumeric data to the format specified
in the Read NULL numbers as field.

Error
handling

report • Set this field to store or empty to direct errors to a dialog box
rather than to the MATLAB Command Window.

• Set this field to report to display query errors in the MATLAB
Command Window.

4-8

Working with Preferences

3 Click OK.

4 Assign the query results to a workspace variable, A.

5 Click Execute to rerun the query.

Information about the retrieved data appears in the Data area.

6 To see the results, enter A in the Command Window.

A =

125970 1400 1100 981
212569 2400 1721 1414
389123 1800 1200 890
400314 3000 2400 1800
400339 4300 0 2600
400345 5000 3500 2800
400455 1200 900 800
400876 3000 2400 1500
400999 3000 1500 1000
888652 0 900 821

NULL values appear as 0s instead of NaNs.

For more information about Preferences, see the setdbprefs function
reference page.

Saving Preferences
Preferences apply only to the current MATLAB software session. They are not
saved with queries. Default Preferences apply when you start a new session,
or after you clear all variables (using, for example, the clear all command).
It is a good practice to check Preferences settings before you run queries.

4-9

4 Using Visual Query Builder

Displaying Query Results

In this section...

“How to Display Query Results” on page 4-10

“Displaying Data Relationally” on page 4-10

“Charting Query Results” on page 4-14

“Displaying Query Results in an HTML Report” on page 4-16

“Using the MATLAB® Report Generator Software to Customize Display of
Query Results” on page 4-17

How to Display Query Results
To display query results, perform one of the following actions:

• Enter the variable name to which to assign the query results in the
MATLAB Command Window.

• Double-click the variable in the VQB Data area to view the data in the
Variable Editor.

The examples in this section use the saved query basic.qry. To load and
configure this query:

1 Click Query > Preferences, and set Read NULL numbers as to 0.

2 Click Query > Load.

3 In the Load SQL Statement dialog box, select basic.qry from the File
name field and click Open.

4 In VQB, enter a value for the MATLAB workspace variable, for
example, A, and click Execute.

Displaying Data Relationally
To display the results of basic.qry:

1 Execute basic.qry.

4-10

Displaying Query Results

2 Click Display > Data.

The query results appear in a figure window.

This display shows only unique values for each field, so you should not
read each row as a single record. In this example, there are 10 entries for
StockNumber, 8 entries for January and February, and 10 entries for
March. The number of entries in each field corresponds to the number of
unique values in the field.

3 Click a value in the figure window, for example, StockNumber 400876,
to see its associated values.

4-11

4 Using Visual Query Builder

The data associated with the selected value appears in bold font and is
connected with a dotted line. The data shows that sales for item 400876 are
3000 in January, 2400 in February, and 1500 in March.

4 As another example, click 3000 under January. It shows three different
items with sales of 3000 units in January: 400314, 400876, and 400999.

4-12

Displaying Query Results

4-13

4 Using Visual Query Builder

Charting Query Results
To chart the results of basic.qry:

1 Click Display > Chart.

The Visual Query Builder Charting dialog box appears.

2 Select a type of chart from the Charts list. In this example, choose a pie
chart by specifying pie.

A preview of the pie chart, with each stock item displayed in a different
color, appears at the bottom of the dialog box.

4-14

Displaying Query Results

3 Select the data to display in the chart from the X data, Y data, and Z
data list boxes. In this example, select March from the X data list box to
display a pie chart of March data.

The pie chart preview now shows percentages for March data.

4 To display a legend, which maps colors to the stock numbers, select the
Show legend check box.

The Legend labels field becomes active.

5 Select StockNumber from the Legend labels list box.

A legend appears in the chart preview. Drag and move the legend in the
preview as needed.

4-15

4 Using Visual Query Builder

6 Click Close to close the Charting dialog box.

Displaying Query Results in an HTML Report
To display results for basic.qry in an HTML report, click Display > Report.

The query results appear as a table in a Web browser. Each row represents a
record from the database. In this example, sales for item 400876 are 3000 in
January, 2400 in February, and 1500 in March.

4-16

Displaying Query Results

Note Because some browsers do not start automatically, you may need to
open your Web browser before displaying the query results.

Using the MATLAB Report Generator Software to
Customize Display of Query Results
To use the MATLAB® Report Generator™ software to customize the display
of the results of basic.qry:

1 Click Display > Report Generator.

2 The Report Explorer opens, listing sample report templates
that you can use to create custom reports. Select the template
matlabroot/toolbox/database/vqb/databasetlbx.rpt from the Options
pane in the middle of the Report Explorer window.

4-17

4 Using Visual Query Builder

3 Open the report template for editing by clicking Open a Report file or
stylesheet.

a In the Outline pane on the left, under Report Generator >
databasetlbx.rpt, select Table.

b In the Properties pane on the right, do the following:

4-18

Displaying Query Results

i In Table Content > Workspace Variable Name, enter the name
of the variable to which you assigned the query results in VQB, for
example, 'A'.

ii Under Header/Footer Options, set Number of header rows to 0.

c Click Apply.

4 Click File > Report to run the report.

The report appears in a Web browser.

5 Field names do not automatically display as column headers in the report.
To display the field names:

4-19

4 Using Visual Query Builder

a Modify the workspace variable A as follows:

A = [{'Stock Number', 'January', 'February', 'March'};A]

b In the MATLAB Report Generator properties pane, change Number of
header rows to 1 and regenerate the report. The report now displays
field names as headings.

Each row represents a record from the database. For example, sales for
item 400876 are 3000 in January, 2400 in February, and 1500 in March.

4-20

Displaying Query Results

For more information about the MATLAB Report Generator product, click the
Help button in the Report Explorer or see the MATLAB Report Generator
documentation.

Note Because some browsers are not configured to launch automatically, you
may need to open your Web browser before displaying the report.

4-21

4 Using Visual Query Builder

Fine-Tuning Queries Using Advanced Query Options

In this section...

“Retrieving All Occurrences vs. Unique Occurrences of Data” on page 4-22

“Retrieving Data That Meets Specified Criteria” on page 4-24

“Grouping Statements” on page 4-27

“Displaying Results in a Specified Order” on page 4-31

“Using Having Clauses To Refine Group By Results” on page 4-34

“Creating Subqueries for Values from Multiple Tables” on page 4-37

“Creating Queries That Include Results from Multiple Tables” on page 4-42

“Additional Advanced Query Options” on page 4-45

Note For more information about advanced query options, select Help in
any of the dialog boxes for the options.

Retrieving All Occurrences vs. Unique Occurrences
of Data
To use the dbtoolboxdemo data source to demonstrate how to retrieve all
versus distinct occurrences of data:

1 Set the Data return format preference to cellarray.

2 Set Read NULL numbers as to NaN.

3 In Data operation, choose Select.

4 In Data source, select dbtoolboxdemo.

Do not specify Catalog or Schema.

5 In Tables, select SalesVolume.

6 In Fields, select January.

4-22

Fine-Tuning Queries Using Advanced Query Options

7 To retrieve all occurrences of January:

a In Advanced query options, select All.

b Assign the query results to theMATLAB workspace variable All.

c Click Execute to run the query.

8 To retrieve only unique occurrences of data:

a In Advanced query options, select Distinct.

b Assign the query results to aMATLAB workspace variable Distinct.

c Click Execute to run the query.

9 In the MATLAB Command Window, enter All, Distinct to display the
query results:

4-23

4 Using Visual Query Builder

The value 3000 appears three times in All, but appears only once in
Distinct.

Retrieving Data That Meets Specified Criteria
Use basic.qry and theWhere field in Advanced query options to retrieve
stock numbers greater than 400000 and less than 500000:

1 Load basic.qry.

2 Set the Data return format preference to cellarray.

3 Set Read NULL numbers as to NaN.

4 In Advanced query options, click Where.

The WHERE Clauses dialog box appears.

5 In Fields, select the field whose values you want to restrict, StockNumber.

6 In Condition, specify that StockNumber must be greater than 400000.

a Select Relation.

b In the drop-down list to the right of Relation, select >.

c In the field to the right of the drop-down list, enter 400000.

The WHERE Clauses dialog box now looks as follows.

4-24

Fine-Tuning Queries Using Advanced Query Options

d Click Apply.

The clause that you defined, StockNumber > 400000, appears in the
Current clauses area.

4-25

4 Using Visual Query Builder

7 Add the condition that StockNumber must also be less than 500000.

a In Current clauses, select StockNumber > 400000.

b In Current clauses, click Edit or double-click the StockNumber entry.

c For Operator, select AND.

d Click Apply.

The Current clauses field now displays:

StockNumber > 400000 AND

e In Fields, select StockNumber.

f In Condition, select Relation.

g In the drop-down list to the right of Relation, select <.

h In the field to the right of the drop-down list, enter 500000.

i Click Apply.

The Current clauses field now displays:

StockNumber > 400000 AND
StockNumber < 500000

8 Click OK.

The WHERE Clauses dialog box closes. The Where field and SQL
statement display the Where Clause you specified.

9 Assign the query results to the MATLAB workspace variable A.

10 Click Execute.

4-26

Fine-Tuning Queries Using Advanced Query Options

11 To view the results, enter A in the Command Window:

12 Save this query as basic_where.qry.

Grouping Statements
Use the WHERE Clauses dialog box to group query statements. In this
example, modify basic_where.qry to retrieve data where sales in January,
February, or March exceed 1500 units, if sales in each month exceed 1000
units.

To modify basic_where.qry:

1 Click Where in VQB. The WHERE Clauses dialog box appears.

2 Modify the query to retrieve data if sales in January, February, or March
exceed 1500 units.

4-27

4 Using Visual Query Builder

a In Current clauses, select StockNumber < 500000 and click Edit.

b For Operator, select OR and click Apply.

c In Fields, select January. For Relation, select > and enter 1500 in its
field. For Operator, select OR. Click Apply.

d Repeat step c twice, specifying February and March in Fields.

The WHERE Clauses dialog box now looks as follows.

3 Group the criteria that require sales in each month to exceed 1500 units.

a In Current clauses, select the statement January > 1500 OR. Click
Shift+click to select February > 1500 OR and March > 1500 also.

b Click Group.

An opening parenthesis is added before January and a closing
parenthesis is added after March > 1500, indicating that these
statements are evaluated as a group.

4-28

Fine-Tuning Queries Using Advanced Query Options

4 Modify the query to retrieve data if sales in each month exceed 1000 units.

a Select March > 1500) in Current clauses and click Edit.

b Select AND for Operator and click Apply.

c Select January in Fields. Select > for Relation and enter 1000 in its
field. Select AND for Operator. Click Apply.

d Repeat step c twice, specifying February and March in Fields.

The WHERE Clauses dialog box now looks as follows.

4-29

4 Using Visual Query Builder

e Click OK.

The WHERE Clauses dialog box closes. The SQL statement dialog box
displays the modified where clause.

5 Assign the query results to theMATLAB workspace variable AA.

6 Click Execute to run the query.

4-30

Fine-Tuning Queries Using Advanced Query Options

7 To view the results, enter AA in the MATLAB Command Window.

Removing Grouping of Statements
To use the WHERE Clauses dialog box to remove grouping criteria from the
previous example:

1 In Current clauses, select (January > 1000 AND.

2 Click Shift+click to select February > 1000 AND and March > 1000) also.

3 Click Ungroup.

The parentheses are removed from the statements, indicating that their
grouping is removed.

Displaying Results in a Specified Order
Use Order by in Advanced query options to specify the order in which
query results display.

This example uses the basic_where.qry query you created in “Retrieving
Data That Meets Specified Criteria” on page 4-24. The results of
basic_where.qry are sorted so that January is the primary sort field,
February the secondary, and March the last. Results for January and
February appear in ascending order, and results for March appear in
descending order.

To specify the order in which results appear in basic_where.qry:

4-31

4 Using Visual Query Builder

1 Load basic_where.qry.

2 Set the Data return format preference to cellarray.

3 Set Read NULL numbers to NaN.

4 In Advanced query options, select Order by.

The Order By Clauses dialog box appears.

5 Enter values for the Sort key number and Sort order fields for the
appropriate Fields.

To specify January as the primary sort field and display results in
ascending order:

a In Fields, select January.

b For Sort key number, enter 1.

c For Sort order, select Ascending.

d Click Apply.

The Current clauses area now displays:

January ASC

4-32

Fine-Tuning Queries Using Advanced Query Options

6 To specify February as the second sort field and display results in
ascending order:

a In Fields, select February.

b For Sort key number, enter 2.

c For Sort order, select Ascending.

d Click Apply.

The Current clauses area now displays:

January ASC
February ASC

7 To specify March as the third sort field and display results in descending
order:

a In Fields, select March.

b For Sort key number, enter 3.

c For Sort order, select Descending.

d Click Apply.

The Current clauses area now displays:

January ASC
February ASC
March DESC

8 Click OK.

The Order By Clauses dialog box closes. The Order by field and the SQL
statement in VQB display the specified Order By clause.

9 Assign the query results to the MATLAB workspace variable B.

10 Click Execute to run the query.

4-33

4 Using Visual Query Builder

11 To view the results, enter B in the MATLAB Command Window. Enter A to
display the unordered query results and compare them to B. Your results
look as follows:

For B, results are first sorted by January sales, in ascending order. The
lowest value for January sales, 1200 (for item number 400455), appears
first. The highest value, 5000 (for item number for 400345), appears last.

For items 400999, 400314, and 400876, January sales were 3000.
Therefore, the second sort key, February sales, applies. February sales
appear in ascending order: 1500, 2400, and 2400 respectively.

For items 400314 and 400876, February sales were 2400, so the third
sort key, March sales, applies. March sales appear in descending order:
1800 and 1500, respectively.

Using Having Clauses To Refine Group By Results

Using the HAVING Clauses Dialog Box
Use the Having function to refine the results of a Group By clause.

4-34

Fine-Tuning Queries Using Advanced Query Options

After specifying a group-by clause in Advanced query options, click
Having. The HAVING Clauses dialog box appears.

1 From the Fields list box, select the entry whose value to restrict.

2 Define the Condition for the selected field, as described in “Retrieving
Data That Meets Specified Criteria” on page 4-24.

3 Select Operator to add another condition.

4 Click Apply to create the clause.

The subquery appears in the Current clauses area.

5 Repeat steps 1 through 4 to add more conditions as needed.

6 Change the clauses as needed:

• To edit a clause:

1 Select the clause from Current clauses and click Edit.

2 Modify the Fields, Condition, and Operator fields as needed.

3 Click Apply.

• To group clauses:

4-35

4 Using Visual Query Builder

1 Select the clauses to group from Current clauses. Use Ctrl+click or
Shift+click to select multiple clauses.

2 Click Group. Parentheses are added around the set of clauses.

To ungroup clauses, select the clauses and then click Ungroup.

• To delete a clause, Select the clause from Current clauses and click
Delete. Use Ctrl+click or Shift+click to select multiple clauses.

7 Specify a subquery in the HAVING Clauses dialog box, as needed. For
more information, see “Creating Subqueries for Values from Multiple
Tables” on page 4-37.

8 Click OK.

The Having Clauses dialog box closes. The SQL statement in the Visual
Query Builder dialog box updates to reflect the specified having clause.

Example: Using Having Clauses
This example restricts the results from basic_where.qry to sales greater
than 2000 for January and February:

1 In Advanced query options, click Having. The HAVING Clauses dialog
box appears.

2 For January:

a Select > as the Relation Condition.

b Enter 2000 as the Relation value.

c Select the AND Operator.

d Click Apply.

3 For February:

a Select > as the Relation Condition.

b Enter2000 as the Relation value.

c Click Apply. The HAVING Clauses dialog box appears as follows.

4-36

Fine-Tuning Queries Using Advanced Query Options

4 Click OK.

The Having Clauses dialog box closes. The SQL statement field in the
VQB dialog box reflects the specified Having clause.

5 Assign a MATLAB workspace variable C, and click Execute to run
the query.

Compare these results to those in “Displaying Results in a Specified Order”
on page 4-31.

Creating Subqueries for Values from Multiple Tables
Use the Where feature in Advanced query options to create subqueries.
Creating subqueries in this way is referred to as nested SQL.

This example uses basic.qry, which you created in “Saving Queries” in the
Database Toolbox Getting Started Guide.

The salesVolume table has sales volumes and stock number fields, but no
product description field. The productTable has product description and

4-37

4 Using Visual Query Builder

stock number fields, but no sales volumes. This example retrieves the stock
number for the product whose description is Building Blocks from the
productTable table. It then gets the sales volume values for that stock
number from the salesVolume table.

1 Load basic.qry.

2 Set the Data return format Preference to cellarray and Read NULL
numbers as to NaN.

3 Click Where in Advanced query options.

The WHERE Clauses dialog box appears.

4 Click Subquery.

The Subquery dialog box appears.

4-38

Fine-Tuning Queries Using Advanced Query Options

5 In Tables, select productTable, which includes the association between
the stock number and the product description. The fields in that table
appear.

6 In Fields, select stockNumber, the field that is common to this table and
the table from which you are retrieving results.

The statement SELECT stockNumber FROM productTable is created in the
SQL subquery statement.

7 Limit the query to product descriptions that are Building Blocks.

a In Fields in Subquery WHERE clauses, select productDescription.

b For Condition, select Relation.

c In the drop-down list to the right of Relation, select =.

d In the field to the right of the drop-down list, enter 'Building Blocks'.

e Click Apply.

The clause appears in the Current subquery WHERE clauses field
and is added to the SQL subquery statement.

4-39

4 Using Visual Query Builder

8 Click OK to close the Subquery dialog box.

9 In the WHERE Clauses dialog box, click Apply.

This updates the Current clauses area using the subquery criteria
specified in steps 3 through 8.

4-40

Fine-Tuning Queries Using Advanced Query Options

10 In the WHERE Clauses dialog box, click OK.

The WHERE Clauses dialog box closes. The SQL statement in the VQB
dialog box updates.

11 Assign the query results to the MATLAB workspace variable C.

12 Click Execute.

13 Type C at the prompt in the MATLAB Command Window to see the results.

14 The results are for item 400345, which has the product description
Building Blocks, although that is not evident from the results. Create
and run a query to verify that the product description is Building Blocks:

a For Data source, select dbtoolboxdemo.

b In Tables, select productTable.

c In Fields, select stockNumber and productDescription.

d Assign the query results to theMATLAB workspace variable P.

e Click Execute.

4-41

4 Using Visual Query Builder

f Type P at the prompt in the MATLAB Command Window to view the
results.

The results show that item 400345 has the product description Building
Blocks. In the next section, you create a query that includes product
description in the results.

Note You can include only one subquery in a query using VQB; you can
include multiple subqueries using Database Toolbox functions.

Creating Queries That Include Results from Multiple
Tables
A query whose results include values from multiple tables is said to perform a
join operation in SQL.

This example retrieves sales volumes by product description. It is like the
one in “Creating Subqueries for Values from Multiple Tables” on page 4-37,
but this example creates a query that returns product description rather
than stock number.

The salesVolume table has sales volume and stock number fields, but
no product description field. The productTable table has product
description and stock number fields, but no sales volume field. To create
a query that retrieves data from both tables and equates the stock number
from productTable with the stock number from salesVolume:

4-42

Fine-Tuning Queries Using Advanced Query Options

1 Set the Data return format preference to cellarray and the Read
NULL numbers as preference to NaN.

2 For Data operation, choose Select.

3 For Data source, select dbtoolboxdemo.

The Catalog, Schema, and Tables for dbtoolboxdemo appear.

Do not specify Catalog or Schema.

4 In Tables, select the tables from which you want to retrieve data. For this
example, click Ctrl+click and select both productTable and salesVolume.

The fields (columns) in those tables appear in Fields. Field
names appear in the format fieldName.tableName. Therefore,
productTable.stockNumber indicates the stock number in the product
table and salesVolume.StockNumber indicates the stock number in the
sales volume table.

5 In Fields, click Ctrl+click to select the following fields:

• productTable.productDescription

• salesVolume.January

• salesVolume.February

• salesVolume.March

6 In this example, the Where clause equates the productTable.stockNumber
with the salesVolume.StockNumber, so that product description is
associated with sales volumes in the query results.

In Advanced query options, click Where to associate fields from
different tables. The WHERE Clauses dialog box appears.

7 In the WHERE clauses dialog box:

a In Fields, select productTable.stockNumber.

b For Condition, select Relation.

c In the drop-down list to the right of Relation, select =.

4-43

4 Using Visual Query Builder

d In the field to the right of the drop-down list, enter
salesVolume.StockNumber.

e Click Apply.

The clause appears in the Current clauses field.

f Click OK to close the WHERE Clauses dialog box. The Where field and
SQL statement in VQB display the Where clause.

8 Assign the query results to theMATLAB workspace variable P1.

9 Click Execute to run the query.

10 Type P1 in the MATLAB Command Window.

P1 =

'Victorian Doll' [1400] [1100] [981]
'Train Set' [2400] [1721] [1414]
'Engine Kit' [1800] [1200] [890]
'Painting Set' [3000] [2400] [1800]
'Space Cruiser' [4300] [NaN] [2600]
'Building Blocks' [5000] [3500] [2800]
'Tin Soldier' [1200] [900] [800]
'Sail Boat' [3000] [2400] [1500]
'Slinky' [3000] [1500] [1000]
'Teddy Bear' [NaN] [900] [821]

4-44

Fine-Tuning Queries Using Advanced Query Options

Additional Advanced Query Options
For more information on advanced query options, choose an option and click
Help in its dialog box. For example, click Group by in Advanced query
options, and then click Help in the Group by Clauses dialog box.

4-45

4 Using Visual Query Builder

Retrieving BINARY and OTHER Sun Java Data Types
This example shows how to retrieve data of types BINARY and OTHER, which
may require manipulation before it can undergo MATLAB processing. To
retrieve images using the SampleDB data source and a sample file that parses
image data, matlabroot/toolbox/database/vqb/parsebinary.m:

1 For Data Operation, select Select.

2 In Data source, select SampleDB.

3 In Tables, select Employees.

4 In Fields, select EmployeeID and Photo (which contains bitmap images).

5 Select Query > Preferences.

6 In the Data return format field, specify cellarray.

7 As the MATLAB workspace variable, specify A.

8 Click Execute to run the query.

4-46

Retrieving BINARY and OTHER Sun™ Java™ Data Types

9 Type A in the MATLAB Command Window to view the query results.

A =

[1] [21626x1 int8]
[2] [21626x1 int8]
[3] [21722x1 int8]
[4] [21626x1 int8]
[5] [21626x1 int8]
[6] [21626x1 int8]
[7] [21626x1 int8]
[8] [21626x1 int8]
[9] [21626x1 int8]

10 Assign the first element in A to the variable photo.

photo = A{1,2};

11 Make sure your current folder is writable.

12 Run the sample program parsebinary, which writes the retrieved data to
a file, strips ODBC header information, and displays photo as a bitmap
image.

cd I:\MATLABFiles\myfiles
parsebinary(photo, 'BMP');

For more information on parsebinary, enter help parsebinary, or view
the parsebinary M-file in the MATLAB Editor/Debugger by entering open
parsebinary in the Command Window.

4-47

4 Using Visual Query Builder

Importing and Exporting BOOLEAN Data

In this section...

“Importing BOOLEAN Data from Databases to the MATLAB Workspace”
on page 4-48

“Exporting BOOLEAN Data from the MATLAB Workspace to Databases”
on page 4-51

Importing BOOLEAN Data from Databases to the
MATLAB Workspace
BOOLEAN data is imported from databases into the MATLAB workspace as
data type logical. This data has a value of 0 (false) or 1 (true), and is stored
in a cell array or structure.

This example imports data from the Products table in the Nwind database
into the MATLAB workspace.

1 Set Data return format to cellarray.

2 For Data operation, choose Select.

3 In Data source, select SampleDB.

4 In Tables, select Products.

5 In Fields, select ProductName and Discontinued.

6 Assign the query results to theMATLAB workspace variable D.

7 Click Execute to run the query.

VQB retrieves a 77-by-2 array.

8 Enter D in the MATLAB Command Window. 77 records are returned; only
the first five records appear here due to space constraints.

D =
'Chai' [0]
'Chang' [0]

4-48

Importing and Exporting BOOLEAN Data

'Aniseed Syrup' [0]
[1x28 char] [0]
[1x22 char] [1]

9 Compare these results to the data in Microsoft Access.

�	�������������	
��
������
�!���
�
�!��%
"����
����
��
6���

#���.�
����
��
'�����
���
�!�
�	��������
����	
�!���
��
��
�
6��74���������	���
����

4-49

4 Using Visual Query Builder

10 In the VQB Data area, double-click D to view its contents in the Variable
Editor. The logical value for the first product, Chai, appears as false
instead of 0.

11 In the Variable Editor, double-click false. Its logical value, 0, appears in
a separate window.

For more information about MATLAB logical data types, see Logical Types
in the MATLAB Programming Fundamentals documentation.

4-50

Importing and Exporting BOOLEAN Data

Exporting BOOLEAN Data from the MATLAB
Workspace to Databases
Logical data is exported from the MATLAB workspace to a database as type
BOOLEAN. This example adds two rows of data to the Products table in the
Nwind database.

1 In the MATLAB workspace, create P, the structure you want to export.

P.ProductName{1,1}='Chocolate Truffles';
P.Discontinued{1,1}=logical(0);
P.ProductName{2,1}='Guatemalan Coffee';
P.Discontinued{2,1}=logical(1);

2 For Data operation, choose Insert.

3 In Data source, select SampleDB.

4 In Tables, select Products.

5 In Fields, select ProductName and Discontinued.

6 Assign results to the MATLAB workspace variable P.

7 Click Execute to run the query.

VQB inserts two new rows into the Products table.

View the table in Microsoft Access to verify that the data was correctly
inserted.

4-51

4 Using Visual Query Builder

Saving Queries in M-Files

In this section...

“About Generated M-Files” on page 4-52

“VQB Query Elements in M-Files” on page 4-53

About Generated M-Files
Select Query > Generate M-File to create an M-file that contains the
equivalent Database Toolbox functions required to run an existing query that
was created in VQB. Edit the M-file to include MATLAB or related toolbox
functions, as needed. To run the query, execute the M-file.

The following is an example of an M-file generated by VQB.

% Set preferences with setdbprefs.

s.DataReturnFormat = 'cellarray';

s.ErrorHandling = 'store';

s.NullNumberRead = 'NaN';

s.NullNumberWrite = 'NaN';

s.NullStringRead = 'null';

s.NullStringWrite = 'null';

s.JDBCDataSourceFile = '';

s.UseRegistryForSources = 'yes';

s.TempDirForRegistryOutput = '';

setdbprefs(s)

% Make connection to database. Note that the password has been omitted.

% Using ODBC driver.

conn = database('dbtoolboxdemo','','password');

% Read data from database.

e = exec(conn,'SELECT ALL StockNumber,January,February FROM salesVolume');

e = fetch(e);

close(e)

% Close database connection.

close(conn)

4-52

Saving Queries in M-Files

VQB Query Elements in M-Files
The following VQB query elements do not appear in generated M-files.

• Generated M-files do not include MATLAB workspace variables to which
you assigned query results in the VQB query. The M-file assigns the query
results to e; access these results using the variable e.Data. For example,
you can add a statement to the M-file that assigns a variable name to
e.Data as follows:

myVar = e.Data

• For security reasons, generated M-files do not include passwords required
to connect to databases. Instead, the database statement includes the
string 'password' as a placeholder. To run M-files to connect to databases
that require passwords, substitute your password for the string password
in the database statement.

4-53

4 Using Visual Query Builder

4-54

5

Using Database Toolbox
Functions

• “Getting Started with Database Toolbox Functions” on page 5-2

• “Importing Data from Databases into the MATLAB Workspace” on page 5-3

• “Viewing Information About Imported Data” on page 5-9

• “Exporting Data from the MATLAB Workspace to a New Record in a
Database” on page 5-11

• “Replacing Existing Data in Databases with Data Exported from the
MATLAB Workspace” on page 5-15

• “Exporting Multiple Records from the MATLAB Workspace” on page 5-17

• “Retrieving BINARY or OTHER Sun Java SQL Data Types” on page 5-21

• “Working with Database Metadata” on page 5-23

• “Using Driver Functions” on page 5-29

• “About Objects and Methods in the Database Toolbox Software” on page
5-31

5 Using Database Toolbox™ Functions

Getting Started with Database Toolbox Functions
The following sections provide examples of how to use Database Toolbox
functions. M-files that include functions used in some of these examples are
available in matlab/toolbox/database/dbdemos.

Follow these simple examples consecutively when you first start using the
product. Once you are familiar with Database Toolbox usage, refer to these
examples as needed.

5-2

Importing Data from Databases into the MATLAB® Workspace

Importing Data from Databases into the MATLAB
Workspace

This example imports country data from the customers table in the Nwind
sample database into the MATLAB workspace using the following functions:

• database

• exec

• fetch (cursor.fetch)

• logintimeout

• ping

• setdbprefs

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbimportdemo.m.

1 Before you connect to a database, set the maximum time that you want to
allow the MATLAB software session to try to connect to a database to 5
seconds.

logintimeout(5)
ans=

5

Note If you are connecting to a database using a JDBC connection, you
must use different function syntax in this step. For more information, see
the logintimeout function reference page.

2 Use the database function to define a MATLAB variable, conn, to
represent the returned connection object. Pass the following arguments
to this function:

• The name of the database, SampleDB

• The username and password, which are specified as empty strings
because SampleDB does not require a user name or password

5-3

5 Using Database Toolbox™ Functions

conn = database('SampleDB', '', '')

Enter conn at the command prompt to see the data.

conn =

Instance: 'SampleDB'

UserName: ''

Driver: []

URL: []

Constructor: [1x1 com.mathworks.toolbox.database.databaseConnect]

Message: []

Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]

TimeOut: 5

AutoCommit: 'on'

Type: 'Database Object'

Note If you are connecting to a database using a JDBC connection, you
need to specify different syntax for the database function. For more
information, see the database reference page.

5-4

Importing Data from Databases into the MATLAB® Workspace

3 Use ping to check that the database connection status is successful.

ping(conn)
DatabaseProductName: 'ACCESS'

DatabaseProductVersion: '04.00.0000'
JDBCDriverName: 'JDBC-ODBC Bridge (odbcjt32.dll)'

JDBCDriverVersion: '2.0001 (04.00.6200)'
MaxDatabaseConnections: 64

CurrentUserName: 'admin'
DatabaseURL: 'jdbc:odbc:SampleDB'

AutoCommitTransactions: 'True'

4 Use the exec function to open a cursor and execute an SQL statement.
Pass the following arguments to exec:

• conn, the name of the connection object

• select country from customers, a SQL statement that selects the
country column of data from the customers table

curs = exec(conn, 'select country from customers')

5-5

5 Using Database Toolbox™ Functions

The exec function returns the MATLAB variable curs.

curs =

Attributes: []

Data: 0

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select country from customers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: 0

5 The returned data contains strings, so you must convert it to a format that
supports strings. Use setdbprefs to specify the format cellarray:

setdbprefs('DataReturnFormat','cellarray')

6 Import data into the MATLAB workspace using the fetch function. Pass
the following arguments to this function:

• curs, the cursor object returned by exec

• 10, the maximum number of rows you want fetch to return

curs = fetch(curs, 10)

curs =

Attributes: []

Data: {10x1 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select country from customers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

5-6

Importing Data from Databases into the MATLAB® Workspace

The curs object contains an element, Data, that contains the rows of data
in the cell array.

The Attributes field is always empty. To view cursor attributes, use the
attr function.

7 Assign the data element, curs.Data to the variable AA to display the Data
element of curs:

AA = curs.Data
AA =

'Germany'
'Mexico'
'Mexico'
'UK'
'Sweden'
'Germany'
'France'
'Spain'
'France'
'Canada'

5-7

5 Using Database Toolbox™ Functions

8 To import more rows of data, rerun fetch until you retrieve all data.

9 Continue with the next example. To stop working now and resume working
on the next example at a later time, close the cursor and the connection as
follows:

close(curs)
close(conn)

5-8

Viewing Information About Imported Data

Viewing Information About Imported Data
This example shows how to view information about imported data and close
the connection to the database using the following Database Toolbox functions:

• attr

• close

• cols

• columnnames

• rows

• width

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbinfodemo.m.

1 Open the cursor and connection if needed:

conn = database('SampleDB', '', '');
curs = exec(conn, 'select country from customers');
setdbprefs('DataReturnFormat','cellarray');
curs = fetch(curs, 10);

2 Use rows to return the number of rows in the data set:

numrows = rows(curs)
numrows =

10

3 Use cols to return the number of columns in the data set:

numcols = cols(curs)
numcols =

1

4 Use columnnames to return the names of the columns in the data set:

colnames = columnnames(curs)
colnames =

5-9

5 Using Database Toolbox™ Functions

'country'

5 Use width to return the column width, or size of the field, for the specified
column number:

colsize = width(curs, 1)
colsize =

15

6 Use attr to view multiple attributes for a column:

attributes = attr(curs)
attributes =

fieldName: 'country'
typeName: 'VARCHAR'

typeValue: 12
columnWidth: 15

precision: []
scale: []

currency: 'false'
readOnly: 'false'
nullable: 'true'
Message: []

Tip To import multiple columns, include a colnum argument in attr to
specify the number of columns whose information you want.

7 Close the cursor.

close(curs)

8 Continue with the next example. To stop working now and resume working
on the next example at a later time, close the connection.

close(conn)

5-10

Exporting Data from the MATLAB® Workspace to a New Record in a Database

Exporting Data from the MATLAB Workspace to a New
Record in a Database

This example does the following:

1 Retrieves freight costs from an orders table.

2 Calculates the average freight cost and records the date on which the
calculation was made.

3 Stores this data in a cell array.

4 Exports this data to an empty table.

You learn to use the following Database Toolbox functions:

• get

• fastinsert

• setdbprefs

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbinsertdemo.m.

1 Connect to the data source, SampleDB, if needed:

conn = database('SampleDB', '', '');

2 Use setdbprefs to set the format for retrieved data to numeric:

setdbprefs('DataReturnFormat','numeric')

3 Import three rows of data the freight column of data from the orders
table.

curs = exec(conn, 'select freight from orders');
curs = fetch(curs, 3);

4 Assign the data to the MATLAB workspace variable AA:

AA = curs.Data

5-11

5 Using Database Toolbox™ Functions

AA =
32.3800
11.6100
65.8300

5 Calculate average freight cost and assign the number of rows in the array
to numrows:

numrows = rows(curs);

6 Calculate the average of the data and assign the result to the variable
meanA:

meanA = sum(AA(:))/numrows
meanA =

36.6067

7 Assign the date on which the calculation was made to the variable D:

D = '20-Jan-2002';

8 Assign the date and mean to a cell array to export to a database. Put the
date in the first cell of exdata:

exdata(1,1) = {D}
exdata =

'20-Jan-2002'

Put the mean in the second cell of exdata:

exdata(1,2) = {meanA}
exdata =

'20-Jan-2002' [36.6067]

9 Define the names of the columns to which to export data. In this
example, the column names are Calc_Date and Avg_Cost, from the
Avg_Freight_Cost table in the SampleDB database. Assign the cell array
containing the column names to the variable colnames:

colnames = {'Calc_Date','Avg_Cost'};

5-12

Exporting Data from the MATLAB® Workspace to a New Record in a Database

10 Use the get function to determine the current status of the AutoCommit
database flag. This status determines whether the exported data is
automatically committed to the database. If the flag is off, you can undo
an update; if it is on, data is automatically committed to the database.

get(conn, 'AutoCommit')
ans =
on

The AutoCommit flag is set to on, so the exported data is automatically
committed to the database.

11 Use the fastinsert function to export the data into the Avg_Freight_Cost
table. Pass the following arguments to this function:

• conn, the connection object for the database

• Avg_Freight_Cost, the name of the table to which you are exporting
data

• The cell arrays colnames and exdata

fastinsert(conn, 'Avg_Freight_Cost', colnames, exdata)

fastinsert appends the data as a new record at the end of the
Avg_Freight_Cost table.

12 In Microsoft Access, view the Avg_Freight_Cost table to verify the results.

The Avg_Cost value was rounded to a whole number to match the
properties of that field in Access.

13 Close the cursor.

5-13

5 Using Database Toolbox™ Functions

close(curs)

14 Continue with the next example. To stop now and resume working with the
next example at a later time, close the connection.

close(conn)

5-14

Replacing Existing Data in Databases with Data Exported from the MATLAB® Workspace

Replacing Existing Data in Databases with Data Exported
from the MATLAB Workspace

This example updates the date field that you previously imported into the
Avg_Freight_Cost table using the following Database Toolbox functions:

• close

• update

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbupdatedemo.m.

1 If you have completed the previous example, skip this step. Otherwise,
enter the following commands:

conn = database('SampleDB', '', '');
colnames = {'Calc_Date', 'Avg_Cost'};
D = '20-Jan-2002';
meanA = 36.6067;
exdata = {D, meanA}
exdata =
'20-Jan-2002' [36.6067]

2 Change the date in the Avg_Freight_Cost table from 20-Jan-2002 to
19-Jan-2002:

D = '19-Jan-2002'

3 Assign the new date value to the newdata cell array.

newdata(1,1) = {D}
newdata =

'19-Jan-2002'

4 Specify the record to update in the database by defining a SQL where
statement and assigning it to the variable whereclause. The record to
update is the record whose Calc_Date is 20-Jan-2002. Because the date
string is within a string, it is embedded within two single quotation marks
rather than one.

5-15

5 Using Database Toolbox™ Functions

whereclause = 'where Calc_Date = ''20-Jan-2002'''
whereclause =
where Calc_Date = '20-Jan-2002'

5 Export the data, replacing the record whose Calc_Date is 20-Jan-2002.

update(conn,'Avg_Freight_Cost',colnames,newdata,whereclause)

6 In Microsoft Access, view the Avg_Freight_Cost table to verify the results.

7 Close the cursor and disconnect from the database.

close(conn)

5-16

Exporting Multiple Records from the MATLAB® Workspace

Exporting Multiple Records from the MATLAB Workspace
This example does the following:

1 Imports monthly sales figures for all products from the tutorial database
into the MATLAB workspace.

2 Computes total sales for each month.

3 Exports the totals to a new table.

You use the following Database Toolbox functions:

• fastinsert

• setdbprefs

For more information on these functions, see
matlab\toolbox\database\dbdemos\dbinsert2demo.m.

1 Ensure that the tutorial database is writable, that is, not read-only.

2 Use the database function to connect to the data source, assigning the
returned connection object as conn. Pass the following arguments to this
function:

• dbtoolboxdemo, the name of the data source

• username and password, which are passed as empty strings because no
user name or password is required to access the database

conn = database('dbtoolboxdemo', '', '');

3 Use the setdbprefs function to specify preferences for the retrieved data.
Set the data return format to numeric and specify that NULL values read
from the database are converted to 0 in the MATLAB workspace.

setdbprefs...
({'NullNumberRead';'DataReturnFormat'},{'0';'numeric'})

When you specify DataReturnFormat as numeric, the value for
NullNumberRead must also be numeric.

5-17

5 Using Database Toolbox™ Functions

4 Import data from the salesVolume table.

curs = exec(conn, 'select * from salesVolume');
curs = fetch(curs);

5 Use columnnames to view the column names in the fetched data set:

columnnames(curs)
ans =
'StockNumber', 'January', 'February', 'March', 'April',
'May', 'June', 'July', 'August', 'September', 'October',
'November', 'December'

6 View the data for January (column 2).

curs.Data(:,2)
ans =

1400
2400
1800
3000
4300
5000
1200
3000
3000

0

5-18

Exporting Multiple Records from the MATLAB® Workspace

7 Assign the dimensions of the matrix containing the fetched data set to
m and n.

[m,n] = size(curs.Data)
m =

10
n =

13

8 Use m and n to compute monthly totals. The variable tmp is the sales
volume for all products in a given month c. The variable monthly is the
total sales volume of all products for that month. For example, if c is 2,
row 1 of monthly is the total of all rows in column 2 of curs.Data, where
column 2 is the sales volume for January.

for c = 2:n
tmp = curs.Data(:,c);
monthly(c-1,1) = sum(tmp(:));

end

View the result.

monthly
25100
15621
14606
11944
9965
8643
6525
5899
8632
13170
48345
172000

5-19

5 Using Database Toolbox™ Functions

9 Create a string array containing the column names into which you want to
insert the data, and assign the array to the variable colnames.

colnames{1,1} = 'salesTotal';

10 Use fastinsert to insert the data into the yearlySales table:

fastinsert(conn, 'yearlySales', colnames, monthly)

11 To verify that the data was imported correctly, view the yearlySales table
in the tutorial database.

12 Close the cursor and the database connection.

close(curs)
close(conn)

5-20

Retrieving BINARY or OTHER Sun™ Java™ SQL Data Types

Retrieving BINARY or OTHER Sun Java SQL Data Types
This example retrieves images from the SampleDB data
source using a sample file that parses image data,
matlabroot/toolbox/database/vqb/parsebinary.m.

1 Connect to the SampleDB data source.

conn = database('SampleDB', '', '');

2 Specify cellarray as the data return format preference.

setdbprefs('DataReturnFormat','cellarray');

3 Import the EmployeeID and Photo columns of data from the Employees
table.

curs = exec(conn, 'select EmployeeID,Photo from Employees')
curs = fetch(curs);

4 View the data you imported.

curs.Data
ans =

[1] [21626x1 int8]
[2] [21626x1 int8]
[3] [21722x1 int8]
[4] [21626x1 int8]
[5] [21626x1 int8]
[6] [21626x1 int8]
[7] [21626x1 int8]
[8] [21626x1 int8]
[9] [21626x1 int8]

Note Some OTHER data type fields may be empty, indicating that the data
could not pass through the JDBC/ODBC bridge.

5 Assign the image element you want to the variable photo.

5-21

5 Using Database Toolbox™ Functions

photo = curs.Data{1,2};

6 Run parsebinary. This program writes the retrieved data to a file, strips
ODBC header information from it, and displays photo as a bitmap image
in a figure window. Ensure that your current folder is writable so that the
output of parsebinary can be written to it.

cd 'I:\MATLABFiles\myfiles
parsebinary(photo, 'BMP');

For more information on parsebinary, enter help parsebinary or view
the M-file in the MATLAB Editor/Debugger by entering open parsebinary.

5-22

Working with Database Metadata

Working with Database Metadata

In this section...

“Accessing Metadata” on page 5-23

“Resultset Metadata Objects” on page 5-28

Accessing Metadata
In this example, you use the following Database Toolbox functions to access
metadata:

• dmd

• get

• supports

• tables

1 Connect to the dbtoolboxdemo data source.

conn = database('dbtoolboxdemo', '', '')
conn =

Instance: 'dbtoolboxdemo'
UserName: ''

Driver: []
URL: []

Constructor: [1x1 ...
com.mathworks.toolbox.database.databaseConnect]

Message: []
Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]

TimeOut: 0
AutoCommit: 'on'

Type: 'Database Object'

2 Use the dmd function to create a database metadata objectdbmeta and
return its handle, or identifier:

dbmeta = dmd(conn)
dbmeta = DMDHandle: ...

5-23

5 Using Database Toolbox™ Functions

[1x1 sun.jdbc.odbc.JdbcOdbcDatabaseMetaData]

3 Use the get function to assign database properties data, dbmeta, to the
variable v:

v = get(dbmeta)
v =

AllProceduresAreCallable: 1
AllTablesAreSelectable: 1

DataDefinitionCausesTransactionCommit: 1
DataDefinitionIgnoredInTransactions: 0

DoesMaxRowSizeIncludeBlobs: 0
Catalogs: {4x1 cell}

CatalogSeparator: '.'
CatalogTerm: 'DATABASE'

DatabaseProductName: 'ACCESS'
DatabaseProductVersion: '04.00.0000'

DefaultTransactionIsolation: 2
DriverMajorVersion: 2
DriverMinorVersion: 1

DriverName: [1x31 char]
DriverVersion: '2.0001 (04.00.6200)'

ExtraNameCharacters: [1x29 char]
IdentifierQuoteString: '`'

IsCatalogAtStart: 1
MaxBinaryLiteralLength: 255

MaxCatalogNameLength: 260
MaxCharLiteralLength: 255
MaxColumnNameLength: 64
MaxColumnsInGroupBy: 10

MaxColumnsInIndex: 10
MaxColumnsInOrderBy: 10
MaxColumnsInSelect: 255
MaxColumnsInTable: 255

MaxConnections: 64
MaxCursorNameLength: 64

MaxIndexLength: 255
MaxProcedureNameLength: 64

MaxRowSize: 4052
MaxSchemaNameLength: 0

5-24

Working with Database Metadata

MaxStatementLength: 65000
MaxStatements: 0

MaxTableNameLength: 64
MaxTablesInSelect: 16
MaxUserNameLength: 0
NumericFunctions: [1x73 char]

ProcedureTerm: 'QUERY'
Schemas: {}

SchemaTerm: ''
SearchStringEscape: '\'

SQLKeywords: [1x461 char]
StringFunctions: [1x91 char]

StoresLowerCaseIdentifiers: 0
StoresLowerCaseQuotedIdentifiers: 0

StoresMixedCaseIdentifiers: 0
StoresMixedCaseQuotedIdentifiers: 1

StoresUpperCaseIdentifiers: 0
StoresUpperCaseQuotedIdentifiers: 0

SystemFunctions: ''
TableTypes: {13x1 cell}

TimeDateFunctions: [1x111 char]
TypeInfo: {16x1 cell}

URL: ...
'jdbc:odbc:dbtoolboxdemo'

UserName: 'admin'
NullPlusNonNullIsNull: 0

NullsAreSortedAtEnd: 0
NullsAreSortedAtStart: 0

NullsAreSortedHigh: 0
NullsAreSortedLow: 1

UsesLocalFilePerTable: 0
UsesLocalFiles: 1

Tip For more information about the database metadata properties
returned by get, see the methods of the DatabaseMetaData object on the
Sun Java Web site at http://java.sun.com/j2se/1.4.2/docs/
api/java/sql/DatabaseMetaData.html.

5-25

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

5 Using Database Toolbox™ Functions

4 Some information is too long to fit in the display area of the field, so the
size of the field data appears instead. The Catalogs element is shown as a
4-by-1 cell array. View the Catalog information.

v.Catalogs
ans =
'D:\Work\databasetoolboxfiles\Nwind'
'D:\Work\databasetoolboxfiles\Nwind_orig'
'D:\Work\databasetoolboxfiles\tutorial'
'D:\Work\databasetoolboxfiles\tutorial_copy'

5 Use the supports function to see what properties this database supports:

a = supports(dbmeta)
a =

AlterTableWithAddColumn: 1
AlterTableWithDropColumn: 1

ANSI92EntryLevelSQL: 1
ANSI92FullSQL: 0

ANSI92IntermediateSQL: 0
CatalogsInDataManipulation: 1
CatalogsInIndexDefinitions: 1

CatalogsInPrivilegeDefinitions: 0
CatalogsInProcedureCalls: 0

CatalogsInTableDefinitions: 1
ColumnAliasing: 1

Convert: 1
CoreSQLGrammar: 0

CorrelatedSubqueries: 1
DataDefinitionAndDataManipulationTransactions: 1

DataManipulationTransactionsOnly: 0
DifferentTableCorrelationNames: 0

ExpressionsInOrderBy: 1
ExtendedSQLGrammar: 0

FullOuterJoins: 0
GroupBy: 1

GroupByBeyondSelect: 1
GroupByUnrelated: 0

IntegrityEnhancementFacility: 0
LikeEscapeClause: 0

5-26

Working with Database Metadata

LimitedOuterJoins: 0
MinimumSQLGrammar: 1

MixedCaseIdentifiers: 1
MixedCaseQuotedIdentifiers: 0

MultipleResultSets: 0
MultipleTransactions: 1

NonNullableColumns: 0
OpenCursorsAcrossCommit: 0

OpenCursorsAcrossRollback: 0
OpenStatementsAcrossCommit: 1

OpenStatementsAcrossRollback: 1
OrderByUnrelated: 0

OuterJoins: 1
PositionedDelete: 0
PositionedUpdate: 0

SchemasInDataManipulation: 0
SchemasInIndexDefinitions: 0

SchemasInPrivilegeDefinitions: 0
SchemasInProcedureCalls: 0

SchemasInTableDefinitions: 0
SelectForUpdate: 0

StoredProcedures: 1
SubqueriesInComparisons: 1

SubqueriesInExists: 1
SubqueriesInIns: 1

SubqueriesInQuantifieds: 1
TableCorrelationNames: 1

Transactions: 1
Union: 1

UnionAll: 1

A 1 for a given property indicates that the database supports that property;
a 0 means that the database does not support the property.

Tip For more information about properties that the database supports, see
the methods of the DatabaseMetaData object on the Sun Java Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

5-27

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

5 Using Database Toolbox™ Functions

6 Alternatively, use the tables function to retrieve metadata, such as the
names and types of the tables in a catalog in the database. Pass the
following arguments to this function:

• dbmeta , the name of the database metadata object.

• tutorial, the name of the catalog from which you want to retrieve table
names.

t = tables(dbmeta, 'tutorial')
t =

'MSysAccessObjects' 'SYSTEM TABLE'
'MSysIMEXColumns' 'SYSTEM TABLE'
'MSysIMEXSpecs' 'SYSTEM TABLE'
'MSysObjects' 'SYSTEM TABLE'
'MSysQueries' 'SYSTEM TABLE'
'MSysRelationships' 'SYSTEM TABLE'
'inventoryTable' 'TABLE'
'productTable' 'TABLE'
'salesVolume' 'TABLE'
'suppliers' 'TABLE'
'yearlySales' 'TABLE'
'display' 'VIEW'

7 Close the database connection.

close(conn)

Resultset Metadata Objects
Use the resultset function to create resultset objects for cursor object. Then,
use the rsmd function to get metadata information about the resultset objects.

For more information, see the resultset and rsmd function reference pages.

5-28

Using Driver Functions

Using Driver Functions
This example uses the following Database Toolbox functions to create driver
and drivermanager objects, and to get and set their properties:

• drivermanager

• driver

• get

• isdriver

• set

Note There is no equivalent M-file demo available for this example, because
this example relies on a specific system-to-JDBC connection and database.
Your configuration is different from the one in this example, so you cannot
run these examples exactly as written. Instead, substitute appropriate values
for your own system. See your database administrator for more information.

1 Connect to the database.

c = database('orc1','scott','tiger',...
'oracle.jdbc.driver.OracleDriver',...
'jdbc:oracle:thin:@144.212.123.24:1822:');

2 Use the driver function to construct a driver object and return
its handle, for a specified database URL string of the form
jdbc:subprotocol:subname.

d = driver('jdbc:oracle:thin:@144.212.123.24:1822:')
DriverHandle: [1x1 oracle.jdbc.driver.OracleDriver]

3 Use the get function to get information, such as version data, for the
driver object.

v = get(d)
v =
MajorVersion: 1

5-29

5 Using Database Toolbox™ Functions

MinorVersion: 0

4 Use isdriver to verify that d is a valid JDBC driver object.

isdriver(d)
ans =
1

This result shows that d is a valid JDBC driver object. If it is a not valid
JDBC driver object, the returned result is 0.

5 Use the drivermanager function to create a drivermanager object dm.

dm = drivermanager

6 Get properties of the drivermanager object.

v = get(dm)
v =

Drivers: {'sun.jdbc.odbc.JdbcOdbcDriver@761630' ...
[1x38 char]}

LoginTimeout: 0
LogStream: []

7 Set the LoginTimeout value to 10 for all drivers loaded during this session.

set(dm,'LoginTimeout',10)

Verify the LoginTimeout value.

v = get(dm)
v =

Drivers: {'sun.jdbc.odbc.JdbcOdbcDriver@761630'}
LoginTimeout: 10

LogStream: []

5-30

About Objects and Methods in the Database Toolbox™ Software

About Objects and Methods in the Database Toolbox
Software

This toolbox is an object-oriented application. You do not need to be familiar
with the product’s object-oriented implementation to use it; this information
is provided for reference purposes.

The Database Toolbox software includes the following objects:

• Cursor

• Database

• Database metadata

• Driver

• Drivermanager

• Resultset

• Resultset metadata

Each object has its own method folder, whose name begins with an @ sign, in
the matlabroot/toolbox/database/database folder. M-file functions in the
folder for each object provide methods for operating on the object.

Object-oriented characteristics of the toolbox enable you to:

• Use constructor functions to create and return information about objects.

For example, to create a cursor object containing query results, run the
fetch (cursor.fetch) function. The object and stored information about
the object are returned. Because objects are MATLAB structures, you can
view elements of the returned object.

5-31

5 Using Database Toolbox™ Functions

This example uses the fetch function to create a cursor object curs.

curs =

Attributes: []

Data: {10x1 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select country from customers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

View the contents of the Data element in the cursor object.

curs.Data
ans =

'Germany'
'Mexico'
'Mexico'
'UK'
'Sweden'
'Germany'
'France'
'Spain'
'France'

• Use overloaded functions.

Objects allow the use of overloaded functions, which simplify usage because
you only need to use one function to operate on objects. For example, use
the get function to view properties of an object.

• Create custom methods that operate on Database Toolbox objects and
store them in the MATLAB workspace as M-files. For more information,
see “Methods — Defining Class Operations” in the Developing MATLAB
Classes documentation.

5-32

6

Function Reference

Utilities (p. 6-2) Settings for login time, retrieval
format, and more

Database Connection (p. 6-2) Create, test, close, and set
parameters for database connection

SQL Cursor (p. 6-3) Set parameters for and execute
query

Data Import (p. 6-3) Import data from database to
the MATLAB workspace, and get
information about imported data

Database Metadata Object (p. 6-4) Information about database data

Data Export (p. 6-5) Export data from the MATLAB
workspace to database

Driver Object (p. 6-5) Construct and get information about
database driver

Drivermanager Object (p. 6-6) Construct and get information about
database drivermanager

Resultset Object (p. 6-6) Construct and get information about
resultset

Resultset Metadata Object (p. 6-6) Construct and get information about
resultset metadata

Visual Query Builder (p. 6-7) Start query builder GUI and
configure JDBC data source

6 Function Reference

Utilities
logintimeout Set or get time allowed to establish

database connection

setdbprefs Set preferences for retrieval format,
errors, NULLs, and more

Database Connection
close Close database connection, cursor,

or resultset object

database Connect to database

get Retrieve object properties

getdatasources Return names of ODBC and JDBC
data sources on system

isconnection Detect whether database connections
are valid

isreadonly Detect whether database connection
is read-only

ping Get status information about
database connection

set Set properties for database, cursor,
or drivermanager object

setdbprefs Set preferences for retrieval format,
errors, NULLs, and more

sql2native Convert JDBC SQL grammar to
SQL grammar native to system

6-2

SQL Cursor

SQL Cursor
close Close database connection, cursor,

or resultset object

exec Execute SQL statement and open
cursor

get Retrieve object properties

querytimeout Get time specified for SQL queries
to succeed

runstoredprocedure Call stored procedure with input and
output parameters

set Set properties for database, cursor,
or drivermanager object

Data Import
attr Retrieve attributes of columns in

fetched data set

cols Retrieve number of columns in
fetched data set

columnnames Retrieve names of columns in fetched
data set

cursor.fetch Import data into MATLAB
workspace from cursor object created
by exec

database.fetch Execute SQL statement to import
data into MATLAB workspace

fetch cursor.fetch or database.fetch

fetchmulti Import data from multiple resultsets

querybuilder Start SQL query builder GUI to
import and export data

6-3

6 Function Reference

rows Return number of rows in fetched
data set

width Return field size of column in fetched
data set

Database Metadata Object
bestrowid Unique identifier for row in database

table

columnprivileges List database column privileges

columns Return database table column names

crossreference Retrieve information about primary
and foreign keys

dmd Construct database metadata object

exportedkeys Retrieve information about exported
foreign keys

get Retrieve object properties

importedkeys Return information about imported
foreign keys

indexinfo Return indices and statistics for
database tables

primarykeys Get primary key information for
database table or schema

procedurecolumns Get stored procedure parameters
and result columns of catalogs

procedures Get stored procedures for catalogs

supports Detect whether property is supported
by database metadata object

tableprivileges Return database table privileges

6-4

Data Export

tables Return database table names

versioncolumns Automatically update table columns

Data Export
commit Make database changes permanent

insert Add MATLAB data to database
tables (deprecated; use fastinsert
instead)

querybuilder Start SQL query builder GUI to
import and export data

rollback Undo database changes

update Replace data in database table with
MATLAB data

Driver Object
driver Construct database driver object

get Retrieve object properties

isdriver Detect whether driver is valid JDBC
driver object

isjdbc Detect whether driver is JDBC
compliant

isurl Detect whether database URL is
valid

register Load database driver

unregister Unload database driver

6-5

6 Function Reference

Drivermanager Object
drivermanager Construct database drivermanager

object

get Retrieve object properties

set Set properties for database, cursor,
or drivermanager object

Resultset Object
clearwarnings Clear warnings for database

connection or resultset

close Close database connection, cursor,
or resultset object

get Retrieve object properties

isnullcolumn Detect whether last record read in
resultset is NULL

namecolumn Map resultset column name to
resultset column index

resultset Construct resultset object

Resultset Metadata Object
get Retrieve object properties

rsmd Construct resultset metadata object

6-6

Visual Query Builder

Visual Query Builder
confds Configure JDBC data source for

Visual Query Builder

querybuilder Start SQL query builder GUI to
import and export data

6-7

6 Function Reference

6-8

7

Functions — Alphabetical
List

attr

Purpose Retrieve attributes of columns in fetched data set

Syntax attributes = attr(curs, colnum)
attributes = attr(curs)

Description • attributes = attr(curs, colnum) retrieves attribute information
for:

- The column number colnum

- in the fetched data set curs

• attributes = attr(curs) retrieves attribute information for all
columns in the fetched data set curs and stores the data in a cell
array.

• attributes = attr(colnum) displays attributes of column colnum.

A list of returned attributes appears in the following table.

Attribute Description

fieldName Name of the column

typeName Data type

typeValue Numerical representation of the data type

columnWidth Size of the field

precision Precision value for floating and double data
types; an empty value is returned for strings

scale Precision value for real and numeric data
types; an empty value is returned for strings

currency If true, data format is currency

readOnly If true, data cannot be overwritten

nullable If true, data can be NULL

Message Error message returned by fetch

7-2

attr

Examples Example 1: Get Attributes for One Column

Get column attributes for the fourth column of a fetched data set.

attr(curs, 4)

ans =
fieldName: 'Age'
typeName: 'LONG'

typeValue: 4
columnWidth: 11

precision: []
scale: []

currency: 'false'
readOnly: 'false'
nullable: 'true'
Message: []

Example 2: Get Attributes for All Columns

1 Get column attributes for curs and assign them to attributes.

attributes = attr(curs)

2 View the attributes of column 4.

attributes(4)
ans =

fieldName: 'Age'
typeName: 'LONG'

typeValue: 4
columnWidth: 11

precision: []
scale: []

currency: 'false'
readOnly: 'false'
nullable: 'true'
Message: []

7-3

attr

See Also cols, columnnames, columns, cursor.fetch,dmd, get, tables, width

7-4

bestrowid

Purpose Unique identifier for row in database table

Syntax b = bestrowid(dbmeta, 'cata', 'sch')
b = bestrowid(dbmeta, 'cata', 'sch', 'tab')

Description • b = bestrowid(dbmeta, 'cata', 'sch') returns the optimal set of
columns in a table that uniquely identifies:

-
a row in the schema sch, in the catalog cata, for the database whose
database metadata object is dbmeta.

b = bestrowid(dbmeta, 'cata', 'sch', 'tab') returns the
optimal set of columns that uniquely identifies a row in table tab, in
the schema sch, in the catalog cata, for the database whose database
metadata object is dbmeta.

Examples Run bestrowid, passing it the following arguments:

• dbmeta, the database metadata object

• msdb, the catalog

• geck, the schema

• builds, the table

b = bestrowid(dbmeta, 'msdb', 'geck', 'builds')
b =

'build_id'

The result indicates that each entry in the build_id column is unique
and identifies the row.

See Also columns, dmd, get, tables

7-5

clearwarnings

Purpose Clear warnings for database connection or resultset

Syntax clearwarnings(conn)
clearwarnings(rset)

Description • clearwarnings(conn) clears warnings reported for the database
connection object conn.

• clearwarnings(rset) clears warnings reported for the resultset
object rset.

Tip For command-line help on clearwarnings, use the overloaded
methods:

help database/clearwarnings
help resultset/clearwarnings

Examples clearwarnings(conn) clears reported warnings for the database
connection object conn.

See Also database, get, resultset

7-6

close

Purpose Close database connection, cursor, or resultset object

Syntax close(object)

Description close(object) closes object, which frees up resources.

Allowable objects for close are listed in the following table.

Object Description
Action Performed by
close(object)

conn Database connection
object

Closes conn

curs Cursor object Closes curs

rset Resultset object Closes rset

Database connections, cursors, and resultsets remain open until you
close them using the close function. Always close a cursor, connection,
or resultset when you finish using it. Close a cursor before closing the
connection used for that cursor.

Note The MATLAB software session closes open cursors and
connections when exiting, but the database might not free up the
cursors and connections.

Tip For command-line help on close, use the overloaded methods:

help database/close
help cursor/close
help resultset/close

7-7

close

Examples Close the cursor curs and the connection conn.

close(curs)
close(conn)

See Also cursor.fetch, database, exec, resultset

7-8

cols

Purpose Retrieve number of columns in fetched data set

Syntax numcols = cols(curs)

Description numcols = cols(curs) returns the number of columns in the fetched
data set curs.

Examples Display three columns in the fetched data set curs.

numcols = cols(curs)

numcols =
3

See Also attr, columnnames, columnprivileges, columns, cursor.fetch, get,
rows, width

7-9

columnnames

Purpose Retrieve names of columns in fetched data set

Syntax FIELDSTRING = columnnames(CURSOR)
FIELDSTRING = columnnames(CURSOR,BCELLARRAY)

Description FIELDSTRING = columnnames(CURSOR) returns the column names of
the data selected from a database table. The column names are enclosed
in quotes and separated by commas.

FIELDSTRING = columnnames(CURSOR,BCELLARRAY) returns the
column names as a cell array of strings when BCELLARRAY is set to true.

Examples 1 Run a SQL query to return all columns from the Microsoft Access
Northwind database employees table:

'select * from employees'

2 Use columnnames to retrieve all column names for the selected
columns:

fieldString = columnnames(cursor)
fieldString =
'EmployeeID','LastName','FirstName','Title',
'TitleOfCourtesy','BirthDate','HireDate','Address',
'City','Region','PostalCode','Country','HomePhone',

See Also attr, cols, columnprivileges, columns, cursor.fetch, get, width

7-10

columnprivileges

Purpose List database column privileges

Syntax lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab')
lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab', 'l')

Description • lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab') returns
a list of privileges for:

- All columns in the table tab

- In the schema sch

- In the catalog cata

- For the database whose database metadata object is dbmeta

• lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab', 'l')
returns a list of privileges for:

- column l in the table tab

- In the schema sch

- In the catalog cata

- For the database whose database metadata object is dbmeta

Examples 1 Use columnprivileges, passing in the following arguments:

• The database metadata object.dbmeta

• The catalog msdb

• The schema geck

• The table builds

• The column name build_id

lp = columnprivileges(dbmeta,'msdb','geck','builds',...
'build_id')
lp =

'builds' 'build_id' {1x4 cell}

7-11

columnprivileges

This result shows:

• The table name, builds, in column 1

• The column name, build_id, in column 2

• The column privileges, lp, in column 3

2 View the contents of the third column in lp.

lp{1,3}
ans =

'INSERT' 'REFERENCES' 'SELECT' 'UPDATE'

See Also cols, columns, columnnames, dmd, get

7-12

columns

Purpose Return database table column names

Syntax l = columns(dbmeta, 'cata')
l = columns(dbmeta, 'cata', 'sch')
l = columns(dbmeta, 'cata', 'sch', 'tab')

Description • l = columns(dbmeta, 'cata') returns a list of:

- All column names in the catalog cata

- For the database whose database metadata object is dbmeta

• l = columns(dbmeta, 'cata', 'sch') returns a list of:

- All column names in the schema sch

- In the catalog cata

- For the database whose database metadata object is dbmeta

• l = columns(dbmeta, 'cata', 'sch', 'tab') returns a list of
columns for:

- The table tab

- In the schema sch

- In the catalog cata

- For the database whose database metadata object is dbmeta

Examples 1 Run columns, passing it the following arguments:

• The database metadata object dbmeta

• The catalog orcl

• The schema schSCOTT

l = columns(dbmeta,'orcl', 'SCOTT')
l =

'BONUS' {1x4 cell}
'DEPT' {1x3 cell}

7-13

columns

'EMP' {1x8 cell}
'SALGRADE' {1x3 cell}
'TRIAL' {1x3 cell}

The results show the names of the five tables in dbmeta, and cell
arrays containing the column names in each table.

2 View the column names for the BONUS table:

l{1,2}
ans =

'ENAME' 'JOB' 'SAL' 'COMM'

See Also attr, bestrowid, cols, columnnames, columnprivileges, dmd, get,
versioncolumns

7-14

commit

Purpose Make database changes permanent

Syntax commit(conn)

Description commit(conn) makes permanent changes made to the database
connection conn since the last commit or rollback function was run. To
run this function, the AutoCommit flag for conn must be off.

Examples Example 1: Check the Status of the Autocommit Flag

Check that the status of the AutoCommit flag for connection conn is off.

get(conn,'AutoCommit')
ans =
off

Example 2: Commit Data to a Database

1 Insert exdata into the columns DEPTNO, DNAME, and LOC in the table
DEPT, for the data source conn.

fastinsert(conn, 'DEPT', {'DEPTNO';'DNAME';'LOC'},...
exdata)

2 Commit this data.

commit(conn)

See Also database, exec, fastinsert, get, rollback, update

7-15

confds

Purpose Configure JDBC data source for Visual Query Builder

GUI
Alternatives

Select Define JDBC data sources from the Visual Query Builder
Query menu.

Syntax confds

Description confds displays the VQB Define JDBC data sources dialog box. Use
confds only to build and run queries using Visual Query Builder with
JDBC drivers.

For information about how to use the Define JDBC data sources dialog
box to configure JDBC drivers, see “Setting Up Data Sources for Use
with JDBC Drivers” in the Database Toolbox Getting Started Guide.

Tip Use the database function to define JDBC data sources
programmatically.

7-16

confds

See Also database, querybuilder

7-17

crossreference

Purpose Retrieve information about primary and foreign keys

Syntax f = crossreference(dbmeta, 'pcata', 'psch', 'ptab', 'fcata',

'fsch', 'ftab')

Description f = crossreference(dbmeta, 'pcata', 'psch', 'ptab',
'fcata', 'fsch', 'ftab') returns information about the relationship
between foreign keys and primary keys for the database whose database
metadata object is dbmeta. The primary key information is for:

• The table ptab

• In the primary schema psch

• Of the primary catalog pcata

The foreign key information is for:

• The foreign table ftab

• In the foreign schema fsch

• Of the foreign catalog fcata

Examples Run crossreference to get primary and foreign key information given
the following arguments:

• The database metadata object.dbmeta

• The primary and foreign catalog orcl

• The primary and foreign schema SCOTT

• The table DEPT that contains the referenced primary key

• The table EMP that contains the foreign key

f = crossreference(dbmeta,'orcl','SCOTT','DEPT',...
'orcl','SCOTT','EMP')

f = Columns 1 through 7

7-18

crossreference

'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' ...
'SCOTT' 'EMP'

Columns 8 through 13
'DEPTNO' '1' 'null' '1' 'FK_DEPTNO'...
'PK_DEPT'

The results show the following primary and foreign key information.

Column Description Value

1 Catalog that contains primary key,
referenced by foreign imported key

orcl

2 Schema that contains primary key,
referenced by foreign imported key

SCOTT

3 Table that contains primary key,
referenced by foreign imported key

DEPT

4 Column name of primary key,
referenced by foreign imported key

DEPTNO

5 Catalog that has foreign key orcl

6 Schema that has foreign key SCOTT

7 Table that has foreign key EMP

8 Foreign key column name that
references the primary key in another
table

DEPTNO

9 Sequence number within foreign key 1

10 Update rule, that is, what happens to
the foreign key when the primary key
updates

null

11 Delete rule, that is, what happens to
the foreign key when the primary key
is deleted

1

7-19

crossreference

Column Description Value

12 Foreign imported key name FK_DEPTNO

13 Primary key name in referenced table PK_DEPT

There is only one foreign key in the schema SCOTT. The table DEPT
contains a primary key DEPTNO that is referenced by the field DEPTNO in
the table EMP. The field DEPTNO in the table EMP table is a foreign key.

Tip For a description of the codes for update and delete rules, see
the getCrossReference property on the Sun Java Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

See Also dmd, exportedkeys, get, importedkeys, primarykeys

7-20

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

cursor.fetch

Purpose Import data into MATLAB workspace from cursor object created by exec

GUI
Alternatives

Retrieve data using Visual Query Builder. For more information about
Visual Query Builder, see Chapter 4, “Using Visual Query Builder”.

Syntax curs = fetch(curs, RowLimit)
curs = fetch(curs)

Description • curs = fetch(curs, RowLimit) imports rows of data into the object
curs from the open SQL cursor curs, up to the maximum RowLimit.

• curs = fetch(curs) imports rows of data from the open SQL cursor
curs into the object curs, up to RowLimit. Use the set function to
specifyRowLimit.

Data is stored in a MATLAB cell array, structure, or numeric matrix. It
is a best practice to assign the object returned by fetch to the variable
curs from the open SQL cursor. This practice results in only one open
cursor object, which consumes less memory than multiple open cursor
objects.

The next time fetch is run, records are imported starting with the
row following the specified RowLimit. If you do not specify a RowLimit,
fetch imports all remaining rows of data.

Fetching large amounts of data can result in memory or speed issues.
In this case, use RowLimit to limit how much data you retrieve at once.

Remarks This page documents fetch for a cursor object. For more information
about the use of fetch, cursor.fetch, and database.fetch, see
fetch. Unless otherwise noted, fetch in this documentation refers to
cursor.fetch, rather than database.fetch.

Examples Example 1: Import All Rows of Data

1 Use fetch to import all data into the cursor object curs, and store
the data in a cell array contained in the cursor object field curs.Data.

7-21

cursor.fetch

.

curs = fetch(curs)

curs =

Attributes: []

Data: {91x1 cell}

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select country from customers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

2 Display data in curs.Data. Due to space constraints, only a portion
of the returned data appears here.

curs.Data
ans =

'Germany'
'Mexico'
'Mexico'
'UK'
'Sweden'
.
.
.

'USA'
'Finland'
'Poland'

Example 2 — Import a Specified Number of Rows

1

7-22

cursor.fetch

a Use the RowLimit argument to retrieve only the first three rows
of data.

curs = fetch(curs, 3)
curs =

Attributes: []
Data: {3x1 cell}

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: 'select country from customers'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch: ...

[1x1 com.mathworks.toolbox.database.fetchTheData]

b View the data.

curs.Data
ans =

'Germany'
'Mexico'
'Mexico'

2

a Rerun the fetch function to return the second three rows of data.

curs = fetch(curs, 3);

b View the data.

curs.Data
ans =

'UK'

7-23

cursor.fetch

'Sweden'
'Germany'

Example 3 — Import Rows Iteratively until You Retrieve All
Data

Use the RowLimit argument to retrieve the first ten rows of data, and
then rerun the import using a while loop, retrieving ten rows at a
time. Continue until you have retrieved all data, which occurs when
curs.Data is 'No Data'.

% Initialize RowLimit (fetchsize)
fetchsize = 10
% Check for more data. Retrieve and display all data.
while ~strcmp(curs.Data, 'No Data')
curs=fetch(curs,fetchsize);
curs.Data(:)

end
ans =

'No Data'

Example 4 — Import Numeric Data

Import a column of numeric data, using the setdbprefs function to
specifynumeric as the format for the retrieved data.

conn = database('SampleDB', '', '');
curs=exec(conn, 'select all UnitsInStock from Products');
setdbprefs('DataReturnFormat','numeric')
curs=fetch(curs,3);
curs.Data
ans =

39
17
13

7-24

cursor.fetch

Example 5 — Import BOOLEAN Data

1 Import data that includes a BOOLEAN field, using the setdbprefs
function to specify cellarray as the format for the retrieved data.

conn = database('SampleDB', '', '');
curs=exec(conn, 'select ProductName, ...
Discontinued fromProducts');
setdbprefs('DataReturnFormat','cellarray')
curs=fetch(curs,5);
A=curs.Data
A =

'Chai' [0]
'Chang' [0]
'Aniseed Syrup' [0]

[1x28 char] [0]
[1x22 char] [1]

2 View the class of the second column of A:

class(A{1,2})
ans =
logical

See Also attr, cols, columnnames, database, database.fetch, exec, fetch,
fetchmulti, get, logical, rows, resultset, set, width, Chapter 4,
“Using Visual Query Builder”,

“Retrieving BINARY or OTHER Sun Java SQL Data Types” on page
5-21

7-25

database

Purpose Connect to database

GUI
Alternatives

Connect to databases using Visual Query Builder. For more information
on Visual Query Builder, see Chapter 4, “Using Visual Query Builder”.

Syntax conn = database('datasourcename','username','password')
conn = database('databasename','username',...
'password','driver','databaseurl')

Description
conn = database('datasourcename','username','password')
connects a MATLAB software session to a database via an ODBC driver
and assigns the returned connection object to conn. The arguments
passed to this function are as follows:

• datasourcename: The data source to which you connect.

• username and password are the user name and password required
to connect to the database. If a user name or password are not
required to connect to your database, specify empty strings for these
arguments.

conn = database('databasename','username',...
'password','driver','databaseurl') connects a MATLAB software
session to a database and assigns the returned connection object to
conn. The arguments passed to this function are as follows:

• databasename: The name of the database to which you connect.

• driver: The name of your JDBC driver.

Note The JDBC driver is sometimes referred to as the class that
implements the Sun Java SQL driver for your database.

7-26

database

• username and password: The user name and password required
to connect to the database. If a user name or password are not
required to connect to your database, specify empty strings for these
arguments.

• Find the correct driver name

databaseurl: A JDBC URL object of the form
jdbc:subprotocol:subname. subprotocol is a database
type, such as Oracle. subname may contain other information used by
driver, such as the location of the database and/or a port number.
subname may take the form //hostname:port/databasename.

If database establishes a database connection, it returns information
about the connection object, as shown in the following example:

Instance: 'SampleDB'

UserName: ''

Driver: []

URL: []

Constructor: [1x1 com.mathworks.toolbox.database.databaseConnect]

Message: []

Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]

TimeOut: 0

AutoCommit: 'off'

Type: 'Database Object'

Examples Example 1 — Establish an ODBC Connection

Connect to an ODBC data source called Pricing, specifying user name
mike, and password bravo.

conn = database('Pricing', 'mike', 'bravo');

Example 2 — Establish an ODBC Connection without
Specifying a User Name and Password

Connect to an ODBC data source SampleDB where a user name and
password are not required to access the database.

7-27

database

conn = database('SampleDB','','');

Example 3 — Establish a JDBC Connection

In this example, you establish a JDBC connection by passing the
following arguments to the database function:

• oracle, the database to which you connect

• scott and tiger, the required user name and password

• oracle.jdbc.driver.OracleDriver, the oci7 JDBC driver name

• jdbc:oracle:oci7, the URL that specifies the location of the
database server

conn = database('oracle','scott','tiger',...
'oracle.jdbc.driver.OracleDriver','jdbc:oracle:oci7:');

The JDBC name and URL take different forms for different databases,
as shown in the examples in the following table.

JDBC Name and URL Example Syntax

Database JDBC Name and URL Example Syntax

IBM Informix JDBC driver: com.informix.jdbc.IfxDriver

Database URL: jdbc:informix-sqli://161.144.202.206:3000:
INFORMIXSERVER=stars

MySQL JDBC driver: twz1.jdbc.mysql.jdbcMysqlDriver

Database URL: jdbc:z1MySQL://natasha:3306/metrics

JDBC driver: com.mysql.jdbc.Driver

Database URL: jdbc:mysql://devmetrics.mrkps.com/testing

Oracle
oci7 drivers

JDBC driver: oracle.jdbc.driver.OracleDriver

Database URL: jdbc:oracle:oci7:@rex

7-28

database

JDBC Name and URL Example Syntax (Continued)

Database JDBC Name and URL Example Syntax

Oracle
oci8 drivers

JDBC driver: oracle.jdbc.driver.OracleDriver

Database URL: jdbc:oracle:oci8:@111.222.333.44:1521:

Database URL: jdbc:oracle:oci8:@frug

Oracle
thin drivers

JDBC driver: oracle.jdbc.driver.OracleDriver

Database URL: jdbc:oracle:thin:@144.212.123.24:1822:

Oracle 10
connections
with JDBC (thin
drivers)

JDBC driver: oracle.jdbc.driver.OracleDriver
Database URL: jdbc:oracle:thin: (do not specify the target name
and port)

In this example, the target machine on which the database server
resides is 144.212.123.24 and the port number is 1822.

PostgreSQL JDBC driver: org.postgresql.Driver

Database URL: jdbc:postgresql://masd/MOSE

PostgreSQL
with SSL
connection

JDBC driver: org.postgresql.Driver

Database URL: jdbc:postgresql:servername:dbname:ssl=
true&sslfactory=org.postgresql.ssl.NonValidatingFactory& (the
trailing & is required)

Microsoft SQL
Server

JDBC driver: com.microsoft.jdbc.sqlserver.SQLServerDriver

Database URL:
jdbc:sqlserver://localhost:port;database=databasename

7-29

database

JDBC Name and URL Example Syntax (Continued)

Database JDBC Name and URL Example Syntax

Note For MS SQL Server 2005, the Driver and URL syntax has
changed to:

JDBC driver: com.microsoft.sqlserver.jdbc.SQLServerDriver

Database URL:
sqlserver://localhost:port;database=databasename

Sybase SQL
Server and
Sybase SQL
Anywhere

JDBC driver: com.sybase.jdbc.SybDriver

Database URL: jdbc:sybase:Tds:yourhostname:yourportnumber/

See Also close, dmd, exec, fastinsert, get, getdatasources, isconnection,
isreadonly, logintimeout, ping, supports, update ,Chapter 4,
“Using Visual Query Builder”

7-30

database.fetch

Purpose Execute SQL statement to import data into MATLAB workspace

Syntax results = fetch(conn, sqlquery)
results = fetch(conn, sqlquery, RowInc)

Description • results = fetch(conn, sqlquery) executes the SQL statement
sqlquery and imports data for the open connection object
conn.results is a cell array, structure, or numeric matrix, based on
specifications set by setdbprefs.

• results = fetch(conn, sqlquery, RowInc) executes the SQL
statement sqlquery and imports RowInc rows of data at a time,
given the open connection object conn. Data is stored in a MATLAB
cell array, structure, or numeric matrix, based on specifications set
by setdbprefs.

RowInc, manages speed and memory issues. It is a good practice to use
RowInc when importing large amounts of data.

For more information on SQL statements, see exec.

Remarks • This page documents fetch for a database object. For more
information about the relationship with cursor.fetch, see fetch.

• The order of records in your database does not remain constant. Use
the values in column names to identify records. Use the SQL ORDER
BY command in your sqlquery statement to sort data.

Examples Example 1 — Import Data

1 Import the country column from the customers table in the
SampleDB database.

conn= database('SampleDB','','');
setdbprefs('DataReturnFormat','cellarray')
results=fetch(conn, 'select country from customers')

results =

7-31

database.fetch

'Germany'

'Mexico'

'Mexico'

'UK'

'Sweden'

...

'Finland'

'Brazil'

'USA'

'Finland'

'Poland'

2 View the size of the cell array into which the results were returned.

size(results)ans =

91 1

Tip Try running this example using the rowinc argument to address
memory and speed issues.

7-32

database.fetch

Example 2— Import Two Columns of Data and View
Information

1 Import the ProductName and Discontinued columns from the
SampleDB database.

conn = database('SampleDB', '', '');

setdbprefs('DataReturnFormat','cellarray')

results=fetch(conn, 'select ProductName, Discontinued from Products');

2 View the size of the cell array into which the results were returned.

size(results)
ans =

77 2

3 To see the results for the first row of data, run:

results(1,:)
ans =

'Chai' [0]

4 View the data type of the second element in the first row of data.

class(results{1,2})
ans =
logical

See Also cursor.fetch, database, exec, fetch, logical,

“Retrieving BINARY or OTHER Sun Java SQL Data Types” on page
5-21

7-33

dmd

Purpose Construct database metadata object

Syntax dbmeta = dmd(conn)

Description dbmeta = dmd(conn) constructs a database metadata object for the
database connection conn. Use get and supports to obtain properties
of dbmeta. Use dmd and get(dbmeta) to obtain information you need
about a database, such as table names required to retrieve data.

For a list of functions that operate on database metadata objects, enter:

help dmd/Contents

Examples • dbmeta = dmd(conn) creates a database metadata object dbmeta
for the database connection conn.

• v = get(dbmeta) lists properties of the database metadata object.

See Also columns, database, get, supports, tables

7-34

driver

Purpose Construct database driver object

Syntax d = driver('s')

Description d = driver('s') constructs a database driver object d from s, where s
is a database URL string of the form jdbc:odbc:<name> or <name>. The
driver object d is the first driver that recognizes s.

Examples d = driver('jdbc:odbc:thin:@144.212.123.24:1822:') creates
driver object d.

See Also get, isdriver, isjdbc, isurl, register

7-35

drivermanager

Purpose Construct database drivermanager object

Syntax dm = drivermanager

Description dm = drivermanager constructs a database drivermanager object
which comprises the properties for all loaded database drivers. Use get
and set to obtain and change the properties of dm.

Examples • dm = drivermanager creates a database drivermanager object dm.

• get(dm) returns properties of the drivermanager object dm.

See Also get, register, set

7-36

exec

Purpose Execute SQL statement and open cursor

GUI
Alternatives

Query databases using Visual Query Builder. For more information on
Visual Query Builder, see Chapter 4, “Using Visual Query Builder”.

Syntax curs = exec(conn, 'sqlquery')

Description curs = exec(conn, 'sqlquery') executes the SQL statement
sqlquery for the database connection conn, and opens a cursor.

Running exec returns the cursor object to the variable curs and returns
additional information about the cursor object. The sqlquery argument
can be a stored procedure for that database connection, of the form
{call sp_name (parm1,parm2,...)}.

Remarks • After opening a cursor, use fetch to import data from the cursor. Use
resultset, rsmd, and statement to get properties of the cursor.

• Use querytimeout to specify the maximum amount of time for which
exec tries to execute the SQL statement.

• You can have multiple cursors open at one time.

• A cursor stays open until you close it using the close function.

• Unless noted in this reference page, the exec function supports all
valid SQL statements, such as nested queries.

• The order of records in your database is not constant. Use values in
column names to identify records. Use the SQL ORDER BY command
to sort records.

• Before you modify database tables, ensure that the database is not
open for editing. If you try to edit the database while it is open, you
receive the following MATLAB error:

[Vendor][ODBC Driver] The database engine could not lock
table 'TableName' because it is already in use by
another person or process.

7-37

exec

• For Microsoft Excel, tables in sqlquery are Excel® worksheets. By
default, some worksheet names include $. To select data from a
worksheet with this name format, use a SQL statement of the form:
select * from "Sheet1$" (or 'Sheet1$') .

• You may experience issues with text field formats in the Microsoft
SQL Server database management system. Workarounds for these
issues include:

- Converting fields of format NVARCHAR, TEXT, NTEXT, and VARCHAR
to CHARin the database.

- Usingsqlquery to convert data to VARCHAR. For example, run a
sqlquery statement of the form 'select convert(varchar(20),
field1) from table1'

• The PostgreSQL database management system supports
multidimensional fields, but SQL select statements fail when
retrieving these fields unless you specify an index.

• Some databases require that you include a symbol, such as #, before
and after a date in a query. For example:

curs = exec(conn,'select * from mydb where mydate > #03/05/2005#')

7-38

exec

Examples Example 1 — Select Data from a Database Table

Select data from the customers table that you access using the database
connection conn. Assign the returned cursor object to the variable curs.

curs = exec(conn, 'select * from customers')

curs =

Attributes: []

Data: 0

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select * from customers'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: 0

Example 2 — Select One Column of Data from Database
Table

Select country data from the customers table that you access using the
database connection conn. Assign the SQL statement to the variable
sqlquery and assign the returned cursor to the variable curs.

sqlquery = 'select country from customers';
curs = exec(conn, sqlquery);

Example 3 — Use a Variable in a Query

1 Select data from the customers table that you access using the
database connection conn, where country is a variable. In this
example, you are prompted to specify your country. Your input is
assigned to the variable UserCountry.

UserCountry = input('Enter your country: ', 's')

7-39

exec

2 You are prompted as follows:

Enter your country:

Enter:

Mexico

3 To perform the query using your input, run:

curs = exec(conn, ...

['select * from customers where country= ' '''' UserCountry ''''])

curs=fetch(curs)

The select statement is created by using square brackets to
concatenate the two strings select * from customers where
country = and 'UserCountry'. The pairs of four quotation marks
are needed to create the pair of single quotation marks that appears
in the SQL statement around UserCountry. The outer two marks
delineate the next string to concatenate, and two marks are required
inside them to denote a quotation mark inside a string.

Tip Without using a variable, the function to retrieve the data would
be:

curs = exec(conn, ['select * from customers where country = '...

''Mexico''])

curs=fetch(curs)

Example 4 — Roll Back or Commit Data Exported to
Database Table

Use exec to roll back or commit data after running a fastinsert,
insert, or update for which the AutoCommit flag is off.

• To roll back data for the database connection conn.

7-40

exec

exec(conn, 'rollback')

• To commit the data, run:

exec(conn, 'commit');

Example 5 — Change Database Connection Catalog

Change the catalog for the database connection conn to intlprice.

curs = exec(conn,'Use intlprice');

Example 6 — Create a Table and Add a New Column

This example creates a table and adds a new column to it.

1 Use the SQL CREATE command to create the table.

mktab = 'CREATE TABLE Person(LastName varchar, ...
FirstName varchar,Address varchar,Age int)'

2 Create the table for the database connection object conn.

exec(conn, mktab);

3 Use the SQL ALTER command to add a new column, City, to the table.

a = exec(conn, ...
'ALTER TABLE Person ADD City varchar(30)')

Example 7 — Run a Simple Stored Procedure

• Execute the stored procedure sp_customer_list for the database
connection conn.

curs = exec(conn,'sp_customer_list');

7-41

exec

• Run a stored procedure with input parameters.

curs = exec(conn,'{call sp_name (parm1,parm2,...)}');

Example 8 — Return a Cursor Object Using a Stored
Procedure

The following example calls a database stored procedure that returns
a cursor object.

1 Specify data to return as a structure.

setdbprefs('DataReturnFormat','structure');

2 Define a stored procedure.

ssql_cmd1 = '{?= call get_int_by_id(1,1, ...
to_date('07/02/05','MM/DD/YY'),...
to_date('07/07/05','MM/DD/YY'))}';

3 Execute the stored procedure and open a cursor object.

curs = exec(conn, ssql_cmd1)
curs =

Attributes: []
Data: 0

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: [1x97 char]
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch: 0

7-42

exec

4 Import data from the cursor to a MATLAB variable, a.

a = fetch(curs);

5 View a.Data.

a.Data
ans =

TS_DT: {'2005-07-02 00:00:00.0'}
INT_VALUE: 1

6 Define another stored procedure.

sql_cmd2='{?= call nrg.ts_get_int_by_id(1,1,...
to_date(''07/02/05'',''MM/DD/YY''),...
to_date(''07/20/05'',''MM/DD/YY''))}';

7 Repeat steps 1 through 5 using this new stored procedure.

curs = exec(conn, ssql_cmd2)
curs =

Attributes: []
Data: 0

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: [1x97 char]
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch: 0

a = fetch(curs)
a =

Attributes: []
Data: [1x1 struct]

7-43

exec

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: [1x97 char]
Message: []

Type: 'Database Cursor Object'
ResultSet: ...
[1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]
Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: ...
[1x1 com.mathworks.toolbox.database.fetchTheData]

a.Data
ans =

TS_DT: {2x1 cell}
INT_VALUE: [2x1 double]

8 Examine the attributes of a.

a.Data.TS_DT
ans =

'2005-07-02 00:00:00.0'
'2005-07-10 00:00:00.0'

a.Data.INT_VALUE
ans =

1
6

See Also close, cursor.fetch, database, database.fetch, fastinsert, fetch,
procedures, querybuilder, querytimeout, resultset, rsmd, set,
update, Chapter 4, “Using Visual Query Builder”, “Data Retrieval
Restrictions” on page 1-6

7-44

exportedkeys

Purpose Retrieve information about exported foreign keys

Syntax e = exportedkeys(dbmeta, 'cata', 'sch'
e = exportedkeys(dbmeta, 'cata', 'sch', 'tab')

Description • e = exportedkeys(dbmeta, 'cata', 'sch' returns foreign
exported key information (that is, information about primary keys
that are referenced by other tables) for:

- The schema sch

- Of the catalog cata

- For the database whose database metadata object is dbmeta

• e = exportedkeys(dbmeta, 'cata', 'sch', 'tab') returns
exported foreign key information (that is, information about the
primary key which is referenced by other tables), for:

- The table tab

- In the schema sch

- Of the catalog cata

- For the database whose database metadata object is dbmeta

Examples Get foreign exported key information for the schema SCOTT for the
database metadata object dbmeta.

e = exportedkeys(dbmeta,'orcl','SCOTT')
e =

Columns 1 through 7
'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' ...
'SCOTT' 'EMP'

Columns 8 through 13
'DEPTNO' '1' 'null' '1' 'FK_DEPTNO'...

'PK_DEPT'

The results show the foreign exported key information.

7-45

exportedkeys

Column Description Value

1 Catalog containing primary key that is
exported

null

2 Schema containing primary key that is
exported

SCOTT

3 Table containing primary key that is
exported

DEPT

4 Column name of primary key that is
exported

DEPTNO

5 Catalog that has foreign key null

6 Schema that has foreign key SCOTT

7 Table that has foreign key EMP

8 Foreign key column name, that is the
column name that references the primary
key in another table

DEPTNO

9 Sequence number within the foreign key 1

10 Update rule, that is, what happens to the
foreign key when the primary key updates

null

11 Delete rule, that is, what happens to the
foreign key when the primary key is deleted

1

12 Foreign key name FK_DEPTNO

13 Primary key name that is referenced by
foreign key

PK_DEPT

In the schema SCOTT, only one primary key is exported to (referenced by)
another table. DEPTNO, the primary key of the table DEPT, is referenced
by the field DEPTNO in the table EMP. The referenced table is DEPT and
the referencing table is EMP. In the DEPT table, DEPTNO is an exported
key. Reciprocally, the DEPTNO field in the table EMP is an imported key.

7-46

exportedkeys

For a description of codes for update and delete rules, see
the getExportedKeys property on the Sun Java Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

See Also crossreference, dmd, get, importedkeys, primarykeys

7-47

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

fastinsert

Purpose Add MATLAB data to database table

GUI
Alternatives

Export data using Visual Query Builder with Data operation set to
Insert. For more information on Visual Query Builder, see Chapter
4, “Using Visual Query Builder”.

Syntax fastinsert(conn, 'tablename', colnames, exdata)

Description fastinsert(conn, 'tablename', colnames, exdata) exports
records from the MATLAB variable exdata into new rows in an existing
database table tablename via the connection conn. The variable exdata
can be a cell array, numeric matrix, or structure. You do not specify
the type of data you are exporting; the data is exported in its current
MATLAB format. Specify column names for tablename as strings in
the MATLAB cell array colnames. If exdata is a structure, field names
in the structure must exactly match colnames.

The status of the AutoCommit flag determines whether fastinsert
automatically commits the data to the database. Use get to view the
AutoCommit flag status for the connection and use set to change it. Use
commit or issue an SQL commit statement using exec to commit the
data to the database. Use rollback or issue an SQL rollback statement
using exec to roll back the data.

Useupdate to replace existing data in a database.

Remarks • The fastinsert function replaces the insert function. The two
functions have the same syntax, but fastinsert provides better
performance and supports more object types than insert. If
fastinsert does not work as expected, try running insert.

• The fastinsert function only supports dates in U.S. format; that
is, dates in mm/dd/yyyy format.

• The order of records in your database is not constant. Use values in
column names to identify records.

• If an error message like the following appears when you run
fastinsert, the table may be open in edit mode.

7-48

fastinsert

[Vendor][ODBC Product Driver] The database engine could
not lock table 'TableName' because it is already in use
by another person or process.

In this case, close the table in the database and rerun the fastinsert
function.

Examples Example 1 — Insert a Record

1 Insert a record consisting of two columns, City and Avg_Temp, into
the Temperatures table. City is San Diego and Avg_Temp is 88
degrees. The database connection is conn. Assign the data to the
cell array exdata.

exdata = {'San Diego', 88}

2 Create a cell array containing the column names in Temperatures.

colnames = {'City', 'Avg_Temp'}

3 Insert the data into the database.

fastinsert(conn, 'Temperatures', colnames, exdata)

The row of data is added to the Temperatures table.

Example 2 — Insert Multiple Records

Insert a cell array, exdata, that contains multiple rows of data and
three columns, Date, Avg_Length, and Avg_Wt, into the Growth table.
The database connection is conn.

Insert the data.

fastinsert(conn, 'Growth', ...
{'Date';'Avg_Length';'Avg_Wt'}, exdata)

The records are inserted into the table.

7-49

fastinsert

Example 3 — Import Records, Perform Calculations, and
Export Data

Import data from a database into the MATLAB workspace, perform
calculations on it, and then export the results to a database.

1 Import all data from the products table into a cell array.

conn = database('SampleDB', '', '');
curs = exec(conn, 'select * from products');
setdbprefs('DataReturnFormat','cellarray')
curs = fetch(curs);

2 Assign the first column of data to the variable prod_name.

prod_name = curs.Data(:,1);

3 Assign the sixth column of data to the variable price.

price = curs.Data(:,6);

4 Convert the cell array price to a numeric format, and calculate off
25% of the price. Assign the result of the calculation to the variable
new_price.

new_price =.75*[price{:}]

5 Export prod_name, price, and new_price to the Sale table. Because
prod_name is a character array and price is numeric, you must
export the data as a cell array. To do so, convert new_price from a
numeric array back to a cell array. To convert the columns of data in
new_price to a cell array, run:

new_price = num2cell(new_price);

6 Create an array, exdata, that contains the three columns of data
to export. Put prod_name in column 1, price in column 2, and
new_price in column 3.

7-50

fastinsert

exdata(:,1) = prod_name(:,1);
exdata(:,2) = price;
exdata(:,3) = new_price;

7 Assign the column names to a string array, colnames.

colnames={'product_name', 'price', 'sale_price'};

8 Export the data to the Sale table.

fastinsert(conn, 'Sale', colnames, exdata)

All rows of data are inserted into the Sale table.

Example 4 — Insert Numeric Data

Export tax_rate, a numeric matrix consisting of two columns, into
the Tax table.

fastinsert(conn, 'Tax', {'rate','max_value'}, tax_rate)

Example 5 — Insert and Commit Data

1 Use the SQL commit function to commit data to a database after it
has been inserted. The AutoCommit flag is off.

Insert the cell array exdata into the column names colnames of the
Error_Rate table.

fastinsert(conn, 'Error_Rate', colnames, exdata)

2 Alternatively, commit the data using a SQL commit statement with
the exec function.

cursor = exec(conn,'commit');

7-51

fastinsert

Example 6 — Insert BOOLEAN Data

1 Insert BOOLEAN data (which is represented as MATLAB type logical)
into a database.

conn = database('SampleDB', '', '');
P.ProductName{1}='Chocolate Truffles';
P.Discontinued{1}=logical(0);
fastinsert(conn,'Products',...
{'ProductName';'Discontinued'}, P)

2 View the new record in the database to verify that the Discontinued
field is BOOLEAN. In some databases, the MATLAB logical value 0 is
shown as a BOOLEAN false, No, or a cleared check box.

See Also commit, database, exec, insert, logical, querybuilder, rollback,
set, update, Chapter 4, “Using Visual Query Builder”

7-52

fetch

Purpose cursor.fetch or database.fetch

About
fetch,
cursor.fetch,
and
database.fetch

There are two fetch functions in this toolbox, cursor.fetch and
database.fetch. The fetch function runs one of these functions,
depending on what object you provide to it as an argument. Use
the syntax fetch with the appropriate object argument rather than
explicitly specifying cursor.fetch or database.fetch.

For example, cursor.fetch runs when you pass a cursor object, curs,
to fetch as an argument.

conn=database(...)
curs=exec(conn, sqlquery)
fetch(curs)

The database.fetch function runs when you pass a database object,
conn, to fetch as an argument.

conn=database(...)
fetch(conn, sqlquery)

In this example, the results are effectively identical. database.fetch
runs exec and returns results to the cursor object. It then runs
cursor.fetch, returns results, and closes the cursor object. This shows
that you can use a single call to the database.fetch function to get the
same results as if you had called two functions, exec and cursor.fetch.

cursor.fetch returns a cursor object on which you can run many
other functions, such as get and rows. For this reason, cursor.fetch
is recommended for use in most situations. To import data into the
MATLAB workspace without meta information about the data, use
database.fetch instead of cursor.fetch.

Throughout the documentation, references to fetch denote
cursor.fetch unless explicitly stated otherwise.

Explicitly specify database.fetch or cursor.fetch only when
running help or doc. To get help for database.fetch, run help

7-53

fetch

database.fetch. Similarly, to view the reference pages for either
version of fetch, run doc database.fetch or doc cursor.fetch.

See Also cursor.fetch, database, database.fetch, exec

7-54

fetchmulti

Purpose Import data from multiple resultsets

Syntax curs = fetchmulti(curs)

Description curs = fetchmulti(curs) imports data from the open SQL cursor
object curs into the object curs, where the open SQL cursor object
contains multiple resultsets.

Multiple resultsets are retrieved via exec with a sqlquery statement
that runs a stored procedure consisting of two select statements.

cursmulti.Data contains data from each resultset associated with
cursmulti.Statement. cursmulti.Data is a cell array consisting of cell
arrays, structures, or numeric matrices as specified in setdbprefs; the
data type is the same for all resultsets.

Examples Use exec to run a stored procedure that includes multiple select
statements and fetchmulti to retrieve the resulting multiple resultsets.

conn = database(...)
setdbprefs('DataReturnFormat','cellarray')
curs = exec(conn, '{call sp_1}');
curs = fetchmulti(curs)
Attributes: []

Data: {{10x1 cell} {12x4 cell}}
DatabaseObject: [1x1 database]

RowLimit: 0
SQLQuery: '{call sp_1}'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
[1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
[1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: ...
[1x1 com.mathworks.toolbox.database.fetchTheData]

7-55

fetchmulti

See Also cursor.fetch, database, exec, setdbprefs

7-56

get

Purpose Retrieve object properties

Syntax v = get(object)
v = get(object, 'property')
v.property

Description • v = get(object) returns a structure that contains object and its
corresponding properties, and assigns the structure to v.

• v = get(object, 'property') retrieves the value of property for
object and assigns the value to v.

• v.property returns the value of property after you have created
v by running get.

Use set(object) to view a list of writable properties for object.

Allowable objects include:

• “Database Connection Objects” on page 7-59, which are created using
database

• “Cursor Objects” on page 7-60, which are created using exec or fetch
(cursor.fetch)

• “Driver Objects” on page 7-61, which are created using driver

• “Database Metadata Objects” on page 7-61, which are created using
dmd

• “Drivermanager Objects” on page 7-62, which are created using
drivermanager

• “Resultset Objects” on page 7-62, which are created using resultset

• “Resultset Metadata Objects” on page 7-63, which are created using
rsmd

If you call these objects from applications that use Sun Java, you can
get more information about object properties from the Java Web site at

7-57

get

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

7-58

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

get

Database Connection Objects

Allowable property names and returned values for database connection
objects appear in the following table.

Property Value

'AutoCommit' Status of the AutoCommit flag. It is either on or off,
as specified by set

'Catalog' Name of the catalog in the data source. You may need
to extract a single catalog name from 'Catalog' for
functions such as columns, which accept only a single
catalog.

'Driver' Driver used for a JDBC connection, as specified by
database

'Handle' Identifies a JDBC connection object

'Instance' Name of the data source for an ODBC connection or
the name of a database for a JDBC connection, as
specified by database

'Message' Error message returned by database

'ReadOnly' 1 if the database is read-only; 0 if the database is
writable

'TimeOut' Value for LoginTimeout

'TransactionIsolation' Value of current transaction isolation mode

'Type' Object type, specifically Database Object

'URL' For JDBC connections only, the JDBC URL
objectjdbc:subprotocol:subname, as specified by
database

'UserName' User name required to connect to a given database,
as specified by database

'Warnings' Warnings returned by database

7-59

get

Cursor Objects

Allowable property names and returned values for cursor objects appear
in the following table.

Property Value

'Attributes' Cursor attributes. This field is always
empty. Use the attr function to retrieve
cursor attributes.

'Data' Data in the cursor object data element (the
query results)

'DatabaseObject' Information about a given database object

'RowLimit' Maximum number of rows returned by
fetch, as specified by set

'SQLQuery' SQL statement for a cursor, as specified by
exec

'Message' Error message returned from exec or fetch

'Type' Object type, specifically Database Cursor
Object

'ResultSet' Resultset object identifier

'Cursor' Cursor object identifier

'Statement' Statement object identifier

Note If you specify a value (in seconds) for
the timeout argument, queries time out
after the time exceeds the given value.

'Fetch' 0 for cursor created using exec;
fetchTheData for cursor created using
fetch

7-60

get

Driver Objects

Allowable property names and examples of values for driver objects
appear in the following table.

Property Example of Value

'MajorVersion' 1

'MinorVersion' 1001

Database Metadata Objects

Database metadata objects have many properties. Some allowable
property names and examples of their values appear in the following
table.

Property Example of Value

'Catalogs' {4x1 cell}

'DatabaseProductName' 'ACCESS'

'DatabaseProductVersion' '03.50.0000'

'DriverName' 'JDBC-ODBC Bridge (odbcjt32.dll)'

'MaxColumnNameLength' 64

'MaxColumnsInOrderBy' 10

'URL' 'jdbc:odbc:dbtoolboxdemo'

'NullsAreSortedLow' 1

7-61

get

Drivermanager Objects

Allowable property names and examples of values for drivermanager
objects appear in the following table.

Property Example of Value

'Drivers' {'oracle.jdbc.driver.OracleDriver@1d8e09ef'
[1x37 char]}

'LoginTimeout' 0

'LogStream' []

Resultset Objects

Allowable property names and examples of values for resultset objects
appear in the following table.

Property Example of Value

'CursorName' {'SQL_CUR92535700x'
'SQL_CUR92535700x'}

'MetaData' {1x2 cell}

'Warnings' {[] []}

7-62

get

Resultset Metadata Objects

Allowable property names and examples of values for a resultset
metadata objects appear in the following table.

Property Example of Value

'CatalogName' {'' ''}

'ColumnCount' 2

'ColumnName' {'Calc_Date' 'Avg_Cost'}

'ColumnTypeName' {'TEXT' 'LONG'}

'TableName' {'' ''}

'isNullable' {[1] [1]}

'isReadOnly' {[0] [0]}

The empty strings for CatalogName and TableName indicate that
databases do not return these values.

For command-line help on get, use the overloaded methods:

help cursor/get
help database/get
help dmd/get
help driver/get
help drivermanager/get
help resultset/get
help rsmd/get

Examples Example 1 — Get Connection Property and Data Source
Name

Connect to the database SampleDB, and then get the name of the data
source for the connection and assign it to v.

conn = database('SampleDB', '', '');
v = get(conn, 'Instance')

7-63

get

Example 2 — Get Connection Property and AutoCommit Flag
Status

Check the status of the AutoCommit flag for the database connection
conn.

get(conn, 'AutoCommit')

ans =
on

Example 3 — Display Data in Cursor

Display data in the cursor object curs by running:

get(curs, 'Data')

or:

curs.Data
ans =

'Germany'
'Mexico'
'France'
'Canada'

7-64

get

Example 4 — Get Database Metadata Object Properties

1 View the properties of the database metadata object for connection
conn; due to space constraints, only a portion of the returned data
appears here.

dbmeta = dmd(conn);
v = get(dbmeta)
v =

AllProceduresAreCallable: 1
AllTablesAreSelectable: 1

DataDefinitionCausesTransaction: 1
DataDefinitionIgnoredInTransact: 0

DoesMaxRowSizeIncludeBlobs: 0
Catalogs: {4x1 cell}

NullPlusNonNullIsNull: 0
NullsAreSortedAtEnd: 0

NullsAreSortedAtStart: 0
NullsAreSortedHigh: 0
NullsAreSortedLow: 1

UsesLocalFilePerTable: 0
UsesLocalFiles: 1

2 To view names of the catalogs in the database, run:

v.Catalogs
ans =

'D:\matlab\toolbox\database\dbdemos\db1'
'D:\matlab\toolbox\database\dbdemos\origtutorial'
'D:\matlab\toolbox\database\dbdemos\tutorial'
'D:\matlab\toolbox\database\dbdemos\tutorial1'

See Also columns, cursor.fetch, database, dmd, driver, drivermanager, exec,
getdatasources, resultset, rows, rsmd, set

7-65

getdatasources

Purpose Return names of ODBC and JDBC data sources on system

Syntax d = getdatasources

Description d = getdatasources returns the names of valid ODBC and JDBC data
sources on the system as a cell array d of strings. The function gets
the names of ODBC data sources from the ODBC.INI file located in the
folder returned by running:

myODBCdir = getenv('WINDIR')

d is empty when the ODBC.INI file is valid, but no data sources are
defined. d equals -1 when the ODBC.INI file cannot be opened.

The function also retrieves the names of data sources that are in the
system registry but not in the ODBC.INI file.

If you do not have write access to myODBCdir, the results of
getdatasources may not include data sources that you recently
added. In this case, specify a temporary, writable, output folder via the
preference TempDirForRegistryOutput. For more information about
this preference, see setdbprefs.

getdatasources gets the names of JDBC data sources from the file
that you define using setdbprefs or the Define JDBC data sources
dialog box.

Examples Get the names of databases on your system.

d = getdatasources
d =

'MS Access Database' 'SampleDB' 'dbtoolboxdemo'

See Also database, get, setdbprefs

7-66

importedkeys

Purpose Return information about imported foreign keys

Syntax i = importedkeys(dbmeta, 'cata', 'sch')
i = importedkeys(dbmeta, 'cata', 'sch', 'tab')

Description • i = importedkeys(dbmeta, 'cata', 'sch') returns foreign
imported key information, that is, information about fields that
reference primary keys in other tables, in:

- The schema sch

- Of the catalog cata

- For the database whose database metadata object is dbmeta

• i = importedkeys(dbmeta, 'cata', 'sch', 'tab') returns
foreign imported key information, that is, information about fields
in The table tab. In turn, fields in tab reference primary keys in
other tables in:

- The schema sch

- Of the catalog cata

- For the database whose database metadata object is dbmeta

Examples Get foreign key information for the schema SCOTT in the catalog orcl,
for dbmeta.

i = importedkeys(dbmeta,'orcl','SCOTT')
i =

Columns 1 through 7
'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' ...
'SCOTT' 'EMP'

Columns 8 through 13
'DEPTNO' '1' 'null' '1' 'FK_DEPTNO'...
'PK_DEPT'

The results show foreign imported key information as described in the
following table.

7-67

importedkeys

Column Description Value

1 Catalog containing primary key, referenced
by foreign imported key

orcl

2 Schema containing primary key, referenced
by foreign imported key

SCOTT

3 Table containing primary key, referenced by
foreign imported key

DEPT

4 Column name of primary key, referenced by
foreign imported key

DEPTNO

5 Catalog that has foreign imported key orcl

6 Schema that has foreign imported key SCOTT

7 Table that has foreign imported key EMP

8 Foreign key column name, that is the column
name that references the primary key in
another table

DEPTNO

9 Sequence number within foreign key 1

10 Update rule, that is, what happens to the
foreign key when the primary key updates

null

11 Delete rule, that is, what happens to the
foreign key when the primary key is deleted

1

12 Foreign imported key name FK_DEPTNO

13 Primary key name in referenced table PK_DEPT

In the schema SCOTT, there is only one foreign imported key. The table
EMP contains a field, DEPTNO, that references the primary key in the
DEPT table, the DEPTNO field.

EMP is the referencing table and DEPT is the referenced table.

DEPTNO is a foreign imported key in the EMP table. Reciprocally, the
DEPTNO field in the table DEPT is an exported foreign key and the
primary key.

7-68

importedkeys

For a description of the codes for update and delete rules, see
the getImportedKeys property on the Sun Java Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

See Also crossreference, dmd, exportedkeys, get, primarykeys

7-69

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

indexinfo

Purpose Return indices and statistics for database tables

Syntax x = indexinfo(dbmeta, 'cata', 'sch', 'tab')

Description x = indexinfo(dbmeta, 'cata', 'sch', 'tab') returns indices and
statistics for:

• The table tab

• In the schema sch

• Of the catalog cata

• for the database whose database metadata object is dbmeta

Examples Get index and statistics information for the table DEPT in the schema
SCOTT of the catalog orcl, for dbmeta.

x = indexinfo(dbmeta,'','SCOTT','DEPT')
x =
Columns 1 through 8
'orcl' 'SCOTT' 'DEPT' '0' 'null' 'null' '0' '0'
'orcl' 'SCOTT' 'DEPT' '0' 'null' 'PK_DEPT' '1' '1'

Columns 9 through 13
'null' 'null' '4' '1' 'null'
'DEPTNO' 'null' '4' '1' 'null'

The results contain two rows, meaning there are two index columns.
The statistics for the first index column appear in the following table.

Column Description Value

1 Catalog orcl

2 Schema SCOTT

7-70

indexinfo

Column Description Value

3 Table DEPT

4 Non-unique: 0 if index values can be
non-unique, 1 otherwise

0

5 Index catalog null

6 Index name null

7 Index type 0

8 Column sequence number within
index

0

9 Column name null

10 Column sort sequence null

11 Number of rows in the index table or
number of unique values in the index

4

12 Number of pages used for the table or
number of pages used for the current
index

1

13 Filter condition null

For more information about the index information, see
the getIndexInfo property on the Sun Java Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

See Also dmd, get, tables

7-71

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

insert

Purpose Add MATLAB data to database tables (deprecated; use fastinsert
instead)

Syntax insert(conn, 'tab', colnames, exdata)

Description insert(conn, 'tab', colnames, exdata)

Thefastinsert function has replaced the insert function. fastinsert
offers improved performance and supports more data types thaninsert.

Use insert if fastinsert does not work as expected, especially if you
have used insert successfully in the past.

The insert function uses the same syntax as fastinsert; for details,
see fastinsert.

See Also commit, fastinsert, querybuilder, rollback

7-72

isconnection

Purpose Detect whether database connections are valid

Syntax a = isconnection(conn)

Description a = isconnection(conn) returns 1 if the database connection conn
is valid, or returns 0 otherwise.

Examples Check if the database connection conn is valid.

a = isconnection(conn)
a =

1

See Also database, isreadonly, ping

7-73

isdriver

Purpose Detect whether driver is valid JDBC driver object

Syntax a = isdriver(d)

Description a = isdriver(d) returns 1 if d is a valid JDBC driver object. It returns
0 otherwise.

Examples Check if d is a valid JDBC driver object.

a = isdriver(d)
a =

1

See Also driver, get, isjdbc, isurl

7-74

isjdbc

Purpose Detect whether driver is JDBC compliant

Syntax a = isjdbc(d)

Description a = isjdbc(d) returns 1 if the driver object d is JDBC-compliant. It
returns 0 otherwise.

Examples Verify whether the database driver object d is JDBC compliant.

a = isjdbc(d)
a =

1

See Also driver, get, isdriver, isurl

7-75

isnullcolumn

Purpose Detect whether last record read in resultset is NULL

Syntax a = isnullcolumn(rset)

Description a = isnullcolumn(rset) returns 1 if the last record read in the
resultset rset is NULL. It returns 0 otherwise.

Examples Example 1 — Result Is Not NULL

isnullcolumn returns not null.

1 Run:

curs = fetch(curs,1);
rset = resultset(curs);
isnullcolumn(rset)
ans =

0

2 Verify this result.

curs.Data
ans =

[1400]

Example 2 — Result Is NULL

isnullcolumn returns null.

1 Run:

curs = fetch(curs,1);
rset = resultset(curs);
isnullcolumn(rset)
ans =

1

2 Verify this result.

7-76

isnullcolumn

curs.Data
ans =

[NaN]

See Also get, resultset

7-77

isreadonly

Purpose Detect whether database connection is read-only

Syntax a = isreadonly(conn)

Description a = isreadonly(conn) returns 1 if the database connection conn is
read-only. It returns 0 otherwise.

Examples Check whether conn is read-only.

a = isreadonly(conn)

The result indicates that the database connection conn is read-only:

a =
1

Therefore, you cannot run fastinsert, insert, or update functions
on this database.

See Also database, isconnection

7-78

isurl

Purpose Detect whether database URL is valid

Syntax a = isurl('s', d)

Description a = isurl('s', d) returns 1 if the database URL s for the driver
object d is valid. It returns 0 otherwise.

The URL s is of the form jdbc:odbc:name or name.

Examples Check whether the database URL,
jdbc:odbc:thin:@144.212.123.24:1822: is valid for driver object d.

a = isurl('jdbc:odbc:thin:@144.212.123.24:1822:', d)
a =

1

This indicates that the database URL is valid for d.

See Also driver, get, isdriver, isjdbc

7-79

logintimeout

Purpose Set or get time allowed to establish database connection

Syntax timeout = logintimeout('driver', time)
timeout = logintimeout(time)
timeout = logintimeout('driver')
timeout = logintimeout

Description • timeout = logintimeout('driver', time) sets the amount of
time, in seconds, for a MATLAB software session to connect to
a database via a given JDBC driver. Use logintimeout before
running the database function. If the MATLAB software session
cannot connect to the database within the specified time, it stops
trying.

• timeout = logintimeout(time) sets the amount of time, in
seconds, allowed for a MATLAB software session to try to connect
to a database via an ODBC connection. Use logintimeout before
running the database function. If the MATLAB software session
cannot connect within the allowed time, it stops trying.

• timeout = logintimeout('driver') returns the time, in seconds,
that was previously specified for the JDBC driver. A returned
value of 0 means that the timeout value was not previously set. The
MATLAB software session stops trying to connect to the database if
it is not immediately successful.

• timeout = logintimeout returns the time, in seconds, that you
previously specified for an ODBC connection. A returned value of 0
means that the timeout value was not previously set ; the MATLAB
software session stops trying to make a connection if it is not
immediately successful.

Note If you do not specify a value for logintimeout and the MATLAB
software session cannot establish a database connection, your MATLAB
software session may freeze.

7-80

logintimeout

Note Apple® Mac OS® platforms do not support logintimeout.

Examples Example 1 — Get Timeout Value for ODBC Connection

View the current connection timeout value.

logintimeout
ans =

0

This indicates that you have not specified a timeout value.

Example 2 — Set Timeout Value for ODBC Connection

Set the timeout value to 5 seconds.

logintimeout(5)
ans =

5

Example 3 — Get and Set Timeout Value for JDBC Connection

1 Check the timeout value for a database connection that is established
using an Oracle JDBC driver.

logintimeout('oracle.jdbc.driver.OracleDriver')
ans =

0

This indicates that the timeout value is currently 0.

2 Set the timeout to 5 seconds.

timeout = ...
logintimeout('oracle.jdbc.driver.OracleDriver', 5)
timeout =

5

7-81

logintimeout

3 Verify the timeout value.

logintimeout('oracle.jdbc.driver.OracleDriver')
ans =

5

See Also database, get, set

7-82

namecolumn

Purpose Map resultset column name to resultset column index

Syntax x = namecolumn(rset, n)

Description x = namecolumn(rset, n) maps a resultset column name n to its
resultset column index. rset is the resultset and n is a string or cell
array of strings containing the column names.

Examples 1 Get the indices for the column names DNAME and LOC resultset object
rset.

x = namecolumn(rset, {'DNAME';'LOC'})
x =

2 3

The results show that DNAME is column 2 and LOC is column 3.

2 Get the index for only the LOC column.

x = namecolumn(rset, 'LOC')

See Also columnnames, resultset

7-83

ping

Purpose Get status information about database connection

Syntax ping(conn)

Description ping(conn) returns status information about the database connection
conn if the connection is open. It returns an error message otherwise.

Examples Example 1 — Get Status Information About ODBC Connection

Check the status of the ODBC connection conn.

ping(conn)
ans =

DatabaseProductName: 'ACCESS'
DatabaseProductVersion: '03.50.0000'

JDBCDriverName: 'JDBC-ODBC Bridge (odbcjt32.dll)'
JDBCDriverVersion: '1.1001 (04.00.4202)'

MaxDatabaseConnections: 64
CurrentUserName: 'admin'

DatabaseURL: 'jdbc:odbc:SampleDB'
AutoCommitTransactions: 'True'

Example 2 — Get Status Information About JDBC Connection

Check the status of the JDBC connection conn.

ping(conn)
ans =

DatabaseProductName: 'Oracle'
DatabaseProductVersion: [1x166 char]

JDBCDriverName: 'Oracle JDBC driver'
JDBCDriverVersion: '7.3.4.0.2'

MaxDatabaseConnections: 0
CurrentUserName: 'scott'

DatabaseURL: 'jdbc:oracle:thin: ...
@144.212.123.24:1822:orcl'AutoCommitTransactions:'True'

7-84

ping

Example 3 — Unsuccessful Request for Information About
Connection

In this example, the database connection conn has been terminated
or is not successful. Run:

ping(conn)
Cannot Ping the Database Connection

See Also database, dmd, get, isconnection, set, supports

7-85

primarykeys

Purpose Get primary key information for database table or schema

Syntax k = primarykeys(dbmeta, 'cata', 'sch')
k = primarykeys(dbmeta, 'cata', 'sch', 'tab')

Description • k = primarykeys(dbmeta, 'cata', 'sch') returns primary key
information for all tables in:

- The schema sch

- Of the catalog cata

- For the database whose database metadata object is dbmeta

• k = primarykeys(dbmeta, 'cata', 'sch', 'tab') returns
primary key information for:

- The table tab

- In the schema sch

- Of the catalog cata

- For the database whose database metadata object is dbmeta

Examples Get primary key information for the DEPT table in:

• The schema SCOTT

• Of the catalog orcl

• For the database metadata object dbmeta

k = primarykeys(dbmeta,'orcl','SCOTT','DEPT')
k =

'orcl' 'SCOTT' 'DEPT' 'DEPTNO' '1' 'PK_DEPT'

7-86

primarykeys

The results show the primary key information as described in the
following table.

Column Description Value

1 Catalog orcl

2 Schema SCOTT

3 Table DEPT

4 Column name of primary
key

DEPTNO

5 Sequence number within
primary key

1

6 Primary key name PK_DEPT

See Also crossreference, dmd, exportedkeys, get, importedkeys

7-87

procedurecolumns

Purpose Get stored procedure parameters and result columns of catalogs

Syntax pc = procedurecolumns(dbmeta, 'cata', 'sch')
pc = procedurecolumns(dbmeta, 'cata')

Description • pc = procedurecolumns(dbmeta, 'cata', 'sch') returns the
stored procedure parameters and result columns for:

- The schema sch

- Of the catalog cata

- For the database whose database metadata object is dbmeta

• pc = procedurecolumns(dbmeta, 'cata') returns stored
procedure parameters and result columns for:

- The catalog cata

- For the database whose database metadata object is dbmeta

Running the stored procedure generates results. One row is returned
for each column.

Examples Get stored procedure parameters for:

• The schema ORG

• In the catalog tutorial

• For the database metadata object dbmeta.

pc = procedurecolumns(dbmeta,'tutorial', 'ORG')
pc =

Columns 1 through 7
[1x19 char] 'ORG' 'display' 'Month' '3' ...
'12' 'TEXT'
[1x19 char] 'ORG' 'display' 'Day' '3' ...
'4' 'INTEGER'

Columns 8 through 13

7-88

procedurecolumns

'50' '50' 'null' 'null' '1' 'null'
'50' '4' 'null' 'null' '1' 'null'

The results show stored procedure parameter and result information.
Because two rows of data are returned, there are two columns of data
in the results. The results show that running the stored procedure
display returns the Month and Day columns.

7-89

procedurecolumns

Following is a full description of the procedurecolumns results for the
first row (Month).

Column Description Value for First Row

1 Catalog 'D:\orgdatabase\orcl'

2 Schema 'ORG'

3 Procedure name 'display'

4 Column/parameter name 'MONTH'

5 Column/parameter type '3'

6 SQL data type '12'

7 SQL data type name 'TEXT'

8 Precision '50'

9 Length '50'

10 Scale 'null'

11 Radix 'null'

12 Nullable '1'

13 Remarks 'null'

For more information about the procedurecolumns results, see
the getProcedureColumns property on the Sun Java Web site at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/
DatabaseMetaData.html.

See Also dmd, get, procedures

7-90

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html

procedures

Purpose Get stored procedures for catalogs

Syntax p = procedures(dbmeta, 'cata')
p = procedures(dbmeta, 'cata', 'sch')

Description • p = procedures(dbmeta, 'cata') returns stored procedures in
the catalog cata, for the database whose database metadata object
is dbmeta.

• p = procedures(dbmeta, 'cata', 'sch') returns the stored
procedures in:

- The schema sch

- Of the catalog cata

- For the database whose database metadata object is dbmeta

Stored procedures are SQL statements that are saved with the
database. Use the exec function to run a stored procedure. Specify
the stored procedure as the sqlquery argument instead of explicitly
entering the sqlquery statement as the argument.

Examples 1 Get the names of stored procedures for the catalog DBA, for the
database metadata object dbmeta.

p = procedures(dbmeta,'DBA')
p =

'sp_contacts'
'sp_customer_list'
'sp_customer_products'
'sp_product_info'
'sp_retrieve_contacts'
'sp_sales_order'

2

a Execute the stored procedure sp_customer_list for the database
connection conn, and fetch all data.

7-91

procedures

curs = exec(conn,'sp_customer_list');
curs = fetch(conn)
curs =

Attributes: []
Data: {10x2 cell}

DatabaseObject: [1x1 database]
RowLimit: 0
SQLQuery: 'sp_customer_list'
Message: []

Type: 'Database Cursor Object'
ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

Cursor: ...
[1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
Fetch: ...

[1x1 com.mathworks.toolbox.database.fetchTheData]

b View the results.

curs.Data
ans =

[101] 'The Power Group'
[102] 'AMF Corp.'
[103] 'Darling Associates'
[104] 'P.S.C.'
[105] 'Amo & Sons'
[106] 'Ralston Inc.'
[107] 'The Home Club'
[108] 'Raleigh Co.'
[109] 'Newton Ent.'
[110] 'The Pep Squad'

See Also dmd, exec, get, procedurecolumns

7-92

querybuilder

Purpose Start SQL query builder GUI to import and export data

Syntax querybuilder

Description querybuilder starts Visual Query Builder (VQB), the Database
Toolbox GUI.

Note To populate the VQB Schema and Catalog fields, you must
associate your user name with schemas or catalogs before starting VQB.

Examples For more information on Visual Query Builder, including examples, see
the VQB Help menu or Chapter 4, “Using Visual Query Builder”.

7-93

querytimeout

Purpose Get time specified for SQL queries to succeed

Syntax timeout = querytimeout(curs)

Description timeout = querytimeout(curs) returns the amount of time, in
seconds, allowed for SQL queries of the open cursor curs to succeed. If
a given query cannot complete in the specified time, the toolbox stops
trying to perform the query.

The database administrator defines timeout values. If the timeout
value is zero, queries must complete immediately.

Examples Get the current database timeout setting for curs.

querytimeout(curs)
ans =

10

Limitations • If a given database does not have a database timeout feature, it
returns the following:

[Driver]Driver not capable

• ODBC drivers for Microsoft Access and Oracle do not support
querytimeout.

See Also exec

7-94

register

Purpose Load database driver

Syntax register(d)

Description register(d) loads the database driver object d. Use unregister to
unload the driver.

Although database automatically loads a driver, register allows you
to use get to view properties of the driver before connecting to the
database. The register function also allows you to run drivermanager
with set and get on properties for loaded drivers.

Examples 1 register(d) loads the database driver object d.

2 get(d) returns properties of the driver object.

See Also driver, drivermanager, get, set, unregister

7-95

resultset

Purpose Construct resultset object

Syntax rset = resultset(curs)

Description rset = resultset(curs) creates a resultset object rset for the cursor
curs. To get properties of rset, create a resultset metadata object using
rsmd, or make calls to rset using applications based on Sun Java.

Run clearwarnings, isnullcolumn, and namecolumn on rset. Use
close to close the resultset, which frees up resources.

Examples Construct a resultset object rset.

rset = resultset(curs)
rset =

Handle: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

See Also clearwarnings, close, cursor.fetch, exec, get, isnullcolumn,
namecolumn, rsmd

7-96

rollback

Purpose Undo database changes

Syntax rollback(conn)

Description rollback(conn) reverses changes made to a database using
fastinsert, insert, or update via the database connection conn. The
rollback function reverses all changes made since the last commit or
rollback operation. To use rollback, the AutoCommit flag for conn
must be off.

Note The rollback function does not roll back data in MySQL
databases.

Examples 1 Ensure that the AutoCommit flag for connection conn is off by
running:

get(conn,'AutoCommit')
ans =
off

2 Insert data contained in exdata into the columns DEPTNO, DNAME, and
LOC, in the table DEPT, for the data source conn.

fastinsert(conn, 'DEPT', ...
{'DEPTNO';'DNAME';'LOC'}, exdata)

3 Roll back the data that you inserted into the database by running:

rollback(conn)

The data in exdata is removed from the database. The database now
contains the data it had before you ran the fastinsert function.

See Also commit, database, exec, fastinsert, get, insert, update

7-97

rows

Purpose Return number of rows in fetched data set

Syntax numrows = rows(curs)

Description numrows = rows(curs) returns the number of rows in the fetched data
set curs, where curs has been generated by the cursor.fetch function.

Examples There are four rows in the fetched data set curs.

numrows = rows(curs)

numrows =
4

To see the four rows of data in curs, run:

curs.Data
ans =

'Germany'
'Mexico'
'France'
'Canada'

See Also cols, cursor.fetch, get, rsmd

7-98

rsmd

Purpose Construct resultset metadata object

Syntax rsmeta = rsmd(rset)

Description rsmeta = rsmd(rset) creates a resultset metadata object rsmeta, for
the resultset object rset. Get properties of rsmeta using get or make
calls to rsmeta using applications that are based on Sun Java.

Examples Create a resultset metadata object rsmeta.

rsmeta=rsmd(rset)
rsmeta =

Handle: [1x1 sun.jdbc.odbc.JdbcOdbcResultSetMetaData]

Use v = get(rsmeta) and v.property to view properties of the
resultset metadata object.

See Also exec, get, resultset

7-99

runstoredprocedure

Purpose Call stored procedure with input and output parameters

Syntax results = runstoredprocedure(conn, sp_name, parms_in,
types_out)

Description results = runstoredprocedure(conn, sp_name, parms_in,
types_out) calls a stored procedure with specified input parameters
and returns output parameters, where:

• conn is the database connection handle

• sp_name is the stored procedure to run

• parms_in is a cell array containing the input parameters for the
stored procedure

• types_out is the list of data types of the output parameters

Use runstoredprocedure to return the value of a variable to a
MATLAB variable, which you cannot do when running a stored
procedure via exec. Running a stored procedure via exec returns
resultsets but cannot return output parameters.

Examples These examples illustrate how runstoredprocedure differs from
running stored procedures via exec.

1 The command:

x = runstoredprocedure(c,'myprocnoparams')

Runs a stored procedure that has no input or output parameters.

2 The command:

x = runstoredprocedure(c,'myprocinonly',{2500,'Jones'})

Runs a stored procedure given input parameters 2500 and ’Jones’. It
returns no output parameters.

7-100

runstoredprocedure

3 The command:

x = runstoredprocedure(c,'myproc',{2500,'Jones'},{java.sql.Types.NUMERIC})

Runs the stored procedure myproc given input parameters
2500 and 'Jones'. It returns an output parameter of type
java.sql.Types.NUMERIC, which could be any numeric Sun Java
data type. The output parameter x is the value of a database variable
n. The stored procedure myproc creates this variable, given the input
values 2500 and 'Jones'. For example, myproc computes n, the
number of days when Jones is 2500. It then returns the value of
n to x.

See Also cursor.fetch, exec

7-101

set

Purpose Set properties for database, cursor, or drivermanager object

Syntax set(object, 'property', value)
set(object)

Description • set(object, 'property', value) sets the value of property to
value for the specified object.

• set(object) displays all properties for object.

Allowable values for object are:

• “Database Connection Objects” on page 7-103, created using
database

• “Cursor Objects” on page 7-104, created using exec or fetch
(cursor.fetch)

• “Drivermanager Objects” on page 7-104, created using
drivermanager.

You cannot set all of these properties for all databases. You receive an
error message when you try to set a property that the database does
not support.

7-102

set

Database Connection Objects

The allowable values for property and value for a database connection
object appear in the following table.

Property Value Description

'on' Database data is written
and automatically committed
when you run fastinsert,
insert, or exec. You cannot
use rollback to reverse this
process.

'AutoCommit'

'off' Database data is not
committed automatically
when you run fastinsert,
insert, or update. Use
rollback to reverse this
process. When you are sure
that your data is correct, use
the commitfunction to commit
it to the database.

0 Not read-only; that is,
writable

'ReadOnly'

1 Read-only

'TransactionIsolation' positive
integer

Current transaction isolation
level

Note For some databases, if you insert data and then close the
database connection without having committed the data to the
database, the data gets committed automatically. Your database
administrator can tell you whether your database behaves this way.

7-103

set

Cursor Objects

The allowable property and value for a cursor object appear in the
following table.

Property Value Description

'RowLimit' positive
integer

Sets the RowLimit for fetch.
Specify this property instead of
passing RowLimit as an argument
to the fetch function. When
you define RowLimit forfetch
by using set, fetch behaves
differently depending on what
type of database you are using.

Drivermanager Objects

The allowable property and value for a drivermanager object appear
in the following table.

Property Value Description

'LoginTimeout' positive integer Sets the logintimeout
value for all loaded
database drivers.

For command-line help on set, use the overloaded methods:

help cursor/set
help database/set
help drivermanager/set

Examples Example 1 — Set RowLimit for Cursor

This example does the following:

• Establishes a JDBC connection to a data source

• Runs fetch to retrieve data from the table EMP,

7-104

set

• Sets RowLimit to 5

Run the command:

conn=database('orcl','scott','tiger',...

'oracle.jdbc.driver.OracleDriver',...

'jdbc:oracle:thin:@144.212.123.24:1822:');

curs=exec(conn, 'select * from EMP');

set(curs, 'RowLimit', 5)

curs=fetch(curs)

curs =

Attributes: []

Data: {5x8 cell}

DatabaseObject: [1x1 database]

RowLimit: 5

SQLQuery: 'select * from EMP'

Message: []

Type: 'Database Cursor Object'

ResultSet: [1x1 oracle.jdbc.driver.OracleResultSet]

Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]

Statement: [1x1 oracle.jdbc.driver.OracleStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

As displayed above, the RowLimit property of curs is 5 and the Data
property is 5x8 cell, indicating that fetch returned five rows of data.

In this example, RowLimit limits the maximum number of rows you can
retrieve. Therefore, rerunning the fetch function returns no data.

7-105

set

Example 2 — Set the AutoCommit Flag to On

This example shows what happens when you run a database update
function on a database whose AutoCommit flag is set to on.

1 Determine the status of the AutoCommit flag for the database
connection conn.

get(conn, 'AutoCommit')

ans =
off

The flag is off.

2 Set the flag status to on and verify its value.

set(conn, 'AutoCommit', 'on');
get(conn, 'AutoCommit')

ans =
on

3 Insert a cell array exdata into column names colnames in the table
Growth.

fastinsert(conn, 'Growth', colnames, exdata)

The data is inserted and committed to the database.

Example 3 — Set the AutoCommit Flag to Off and Commit
Data

This example shows the results of running fastinsert and commit to
insert and commit data into a database whose AutoCommit flag is off.

1 First set the AutoCommit flag to off for database connection conn.

set(conn, 'AutoCommit', 'off');

7-106

set

2 Insert a cell array exdata into the column names colnames in the
table Avg_Freight_Cost.

fastinsert(conn, 'Avg_Freight_Cost', colnames, exdata)

3 Commit the data to the database.

commit(conn)

Example 4 — Set the AutoCommit Flag to Off and Roll Back
Data

This example runs update to insert data into a database whose
AutoCommit flag is off. It then uses rollback to roll back the data.

1 Set the AutoCommit flag to off for database connection conn.

set(conn, 'AutoCommit', 'off');

2 Update the data in colnames in the table Avg_Freight_Weight
table, for the record selected by whereclause, with data from the
cell array exdata.

update(conn, 'Avg_Freight_Weight', colnames, exdata,
whereclause)

3 Roll back the data.

rollback(conn)

The data in the table is now as it was before you ran update.

Example 5 — Set the LoginTimeout for a Drivermanager
Object

1 Create a drivermanager object dm and set its LoginTimeout value to
3 seconds.

7-107

set

dm = drivermanager;
set(dm,'LoginTimeout',3);

2 Verify this result.

logintimeout
ans =

3

See Also cursor.fetch, database, drivermanager, exec, fastinsert, get,
insert, logintimeout, ping, update

7-108

setdbprefs

Purpose Set preferences for retrieval format, errors, NULLs, and more

GUI
Alternatives

Click Query > Preferences to set database preferences from Visual
Query Builder.

Syntax setdbprefs
s = setdbprefs
setdbprefs('property')
setdbprefs('property', 'value')
setdbprefs({'property1'; ...}, {'value1'; ...}
setdbprefs(s)

Description • setdbprefs returns current values for database preferences.

• s = setdbprefs returns current values for database preferences to
the structure s. You can save s to a MAT-file to use your specified
preferences in future MATLAB software sessions.

• setdbprefs('property') returns the current value for the specified
property.

• setdbprefs('property', 'value') sets the specified property to
value in the current MATLAB software session. You can include this
statement in a MATLAB startup file to set preferences automatically
when a MATLAB software session starts.

• setdbprefs({'property1'; ...}, {'value1'; ...} sets
properties starting with property1 to values starting with value1,
in the current MATLAB software session.

• setdbprefs(s) sets preferences specified in the structure s to values
that you specify.

Allowable properties appear in the following tables:

• DataReturnFormat and ErrorHandling Properties and Values for
setdbprefs on page 7-110

7-109

setdbprefs

• Null Data Handling Properties and Values for setdbprefs on page
7-111

• Other Properties and Values for setdbprefs (Not Accessible via Query
> Preferences) on page 7-113

DataReturnFormat and ErrorHandling Properties and Values for setdbprefs

Property Allowable Values Description

'cellarray'
(default),
'numeric', or
'structure'

Format for data to import into the MATLAB
workspace. Set the format based on the
type of data being retrieved, memory
considerations, and your preferred method
of working with retrieved data.

'cellarray'
(default)

Imports nonnumeric data into MATLAB cell
arrays.

'numeric' Imports data into MATLAB matrix of
doubles. Nonnumeric data types are
considered NULL and appear as specified in
the NullNumberRead property. Use only
when data to retrieve is in numeric format,
or when nonnumeric data to retrieve is not
relevant.

'DataReturnFormat'

'structure' Imports data into a MATLAB structure. Use
for all data types. Facilitates working with
returned columns.

7-110

setdbprefs

DataReturnFormat and ErrorHandling Properties and Values for setdbprefs
(Continued)

Property Allowable Values Description

'store' (default),
'report', or
'empty'

Specifies how to handle errors when
importing data. Set this parameter before
you run exec.

'store' (default) Errors from running database are stored in
the Message field of the returned connection
object. Errors from running exec are stored
in the Message field of the returned cursor
object.

'report' Errors from running database or exec
display immediately in the MATLAB
Command Window.

'ErrorHandling'

'empty' Errors from running database are stored in
the Message field of the returned connection
object. Errors from running exec are stored
in the Message field of the returned cursor
object. Objects that cannot be created are
returned as empty handles ([]).

Null Data Handling Properties and Values for setdbprefs

Property Allowable Values Description

'NullNumberRead' User-specified, for
example, '0'

Specifies how NULL numbers appear after
being imported from a database into the
MATLAB workspace. NaN is the default
value. String values such as 'NULL' cannot
be set if 'DataReturnFormat' is set to
'numeric'. Set this parameter before
running fetch.

7-111

setdbprefs

Null Data Handling Properties and Values for setdbprefs (Continued)

Property Allowable Values Description

'NullNumberWrite' User-specified, for
example, 'NaN'
(default)

Numbers in the specified format, for
example, NaN appears as NULL after being
exported from the MATLAB workspace to a
database.

'NullStringRead' User-specified, for
example, 'NULL'
(default)

Specifies how NULL strings appear after
being imported from a database into the
MATLAB workspace. Set this parameter
before running fetch.

'NullStringWrite' User-specified, for
example, 'NULL'
(default)

Strings in the specified format, for example,
NaN, appear as NULL after being exported
from the MATLAB workspace to a database.

7-112

setdbprefs

Other Properties and Values for setdbprefs (Not Accessible via Query >
Preferences)

Property
Allowable
Values Description

'JDBCDataSourceFile' User-specified,
for example,
'D:/file.mat'

Path to MAT-file containing JDBC
data sources. For more information,
see “Accessing Existing JDBC Data
Sources” on page 2-4.

'UseRegistryForSources' 'yes' (default)
or 'no'

When set to yes, VQB searches the
Microsoft Windows registry for ODBC
data sources that are not uncovered in
the system ODBC.INI file. The following
message may appear: Registry
editing has been disabled by your
administrator. This message is
harmless and can safely be ignored.

'TempDirForRegistryOutput' User-specified,
for example,
'D:/work'

folder where VQB writes ODBC registry
settings when you run getdatasources.
Use when you add data sources and
do not have write access to the
MATLAB current folder. The default
is the Windows temporary folder,
which is returned by the command
getenv('temp')).

If you specify a folder to which you do
not have write access or which does not
exist, the following error appears:

Cannot export
<folder-name>\ODBC.INI:
Error opening the file.
There may be a disk
or file system error.

7-113

setdbprefs

Remarks When you run clear all, setdbprefs values are cleared and returned
to their default values. It is a good practice to set or verify preferences
values before each fetch.

Examples Example 1 — Display Current Values

Run setdbprefs.

setdbprefs
DataReturnFormat: 'cellarray'

ErrorHandling: 'store'
NullNumberRead: 'NaN'

NullNumberWrite: 'NULL'
NullStringRead: 'null'

NullStringWrite: 'null'
JDBCDataSourceFile: ''

UseRegistryForSources: 'yes'
TempDirForRegistryOutput: ''

These values show that:

• Data is imported from databases into MATLAB cell arrays.

• Errors that occur during a database connection or SQL query attempt
are stored in the Message field of the connection or cursor data object.

• Each NULL number in the database is read into the MATLAB
workspace as NaN. Each NaN in the MATLAB workspace is exported
to the database as NULL. Each NULL string in the database is read
into the MATLAB workspace as 'null'. Each 'null' string in the
MATLAB workspace is exported to the database as a NULL string.

• A MAT-file that specifies the JDBC source file has not been created.

• Visual Query Builder looks in the Windows system registry for data
sources that do not appear in the ODBC.INI file.

• No temporary folder for registry settings has been specified.

7-114

setdbprefs

Example 2 — Change a Preference

Run setdbprefs ('NullNumberRead').

setdbprefs ('NullNumberRead')
NullNumberRead: 'NaN'

Each NULL number in the database is read into the MATLAB workspace
as NaN.

Change the value of this preference to 0.

setdbprefs ('NullNumberRead', '0')

Each NULL number in the database is read into the MATLAB workspace
as 0.

Example 3 — Change the DataReturnFormat Preference

1 Specify that database data be imported into MATLAB cell arrays.

setdbprefs ('DataReturnFormat','cellarray')

2 Import data into the MATLAB workspace.

conn = database('SampleDB', '', '');
curs=exec(conn, ...
'select all ProductName,UnitsInStock fromProducts');

curs=fetch(curs,3);
curs.Data
ans =

'Chai' [39]
'Chang' [17]
'Aniseed Syrup' [13]

3 Change the data return format from cellarray to numeric.

setdbprefs ('DataReturnFormat','numeric')

7-115

setdbprefs

4 Perform the same import operation as you ran in the cell array
example. Note the format of the returned data.

curs.Data
ans =

NaN 39
NaN 17
NaN 13

In the database, the values for ProductName are character strings,
as seen in the previous example when DataReturnFormat was set to
cellarray. Therefore, the ProductName values cannot be read when
they are imported into the MATLAB workspace using the numeric
format. Therefore, the MATLAB software treats them as NULL
numbers and assigns them the current value for the NullNumberRead
property of setdbprefs, NaN.

5 Change the data return format to structure.

setdbprefs ('DataReturnFormat','structure')

6 Then perform the same import operation as you ran in the cell array
example.

curs.Data
ans =

ProductName: {3x1 cell}
UnitsInStock: [3x1 double]

7 View the contents of the structure to see the data.

curs.Data.ProductName
ans =

'Chai'
'Chang'
'Aniseed Syrup'

curs.Data.UnitsInStock

7-116

setdbprefs

ans =
39
17
13

Example 4 — Change the Write Format for NULL Numbers

1 Specify NaN for the NullNumberWrite format.

setdbprefs('NullNumberWrite', 'NaN')

Numbers represented as NaN in the MATLAB workspace are exported
to databases as NULL.

For example, the variable ex_data, contains a NaN.

ex_data =
'09-24-2003' NaN

2 Insert ex_data into a database using fastinsert. TheNaN data is
exported into the database as NULL.

fastinsert (conn, 'Avg_Freight_Cost', colnames, ex_data)

3 Change the value of NullNumberWrite to Inf.

setdbprefs('NullNumberWrite', 'Inf')

4 Attempt to insert ex_data. A MATLAB error appears because the
NaN in ex_data cannot be read.

7-117

setdbprefs

fastinsert(conn, 'Avg_Freight_Cost', colnames, ex_data
??? Error using ==> fastinsert
[Microsoft][ODBC Microsoft Access Driver]
Too few parameters.
Expected 1.

Example 5 — Specify Error Handling Settings

1 Specify the store format for the ErrorHandling preference.

setdbprefs ('ErrorHandling','store')

Errors generated from running database or exec are stored in the
Message field of the returned connection or cursor object.

2 Now try to fetch data from a closed cursor by running:.

conn=database('SampleDB', '', '');

curs=exec(conn, 'select all ProductName from Products');

close(curs)

curs=fetch(curs,3);

curs=

Attributes: []

Data: 0

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select all ProductName from Products'

Message: 'Error: Invalid cursor'

Type: 'Database Cursor Object'

ResultSet: 0

Cursor: 0

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

The error generated by this operation appears in the Message field.

7-118

setdbprefs

3 To specify the report format for the ErrorHandling preference, run:

setdbprefs ('ErrorHandling','report')

Errors generated by running database or exec display immediately
in the Command Window.

4 Now try to fetch data from a closed cursor by running:

conn = database('SampleDB', '', '');
curs=exec(conn, 'select all ProductName from Products');
close(curs)
curs=fetch(curs,3);
??? Error using ==> cursor/fetch (errorhandling)
Invalid Cursor
Error in ==>
D:\matlab\toolbox\database\database\@cursor\fetch.m

On line 36 ==> errorhandling(initialCursor.Message);

The error generated by this operation appears immediately in the
Command Window.

5 Specify the empty format for the ErrorHandling preference.

setdbprefs ('ErrorHandling','empty')

Errors generated while running database or exec are stored in the
Message field of the returned connection or cursor object. In addition,
objects that cannot be created are returned as empty handles, [].

6 Try to fetch data from a closed cursor.

conn = database('SampleDB', '', '');

curs=exec(conn, 'select all ProductName from Products');

close(curs)

curs=fetch(curs,3);

curs =

7-119

setdbprefs

Attributes: []

Data: []

DatabaseObject: [1x1 database]

RowLimit: 0

SQLQuery: 'select all ProductName from Products'

Message: 'Invalid Cursor'

Type: 'Database Cursor Object'

ResultSet: 0

Cursor: 0

Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

Fetch: [1x1 com.mathworks.toolbox.database.fetchTheData]

The error appears in the cursor object Message field. Furthermore,
the Attributes field contains empty handles because no attributes
could be created.

7-120

setdbprefs

Example 6 — Change Multiple Settings

Specify that NULL strings are read from the database into a MATLAB
matrix of doubles as 'NaN':

setdbprefs({'NullStringRead';'DataReturnFormat'},...
{'NaN';'numeric'})

See “Example 8 — Assign Values to a Structure” on page 7-121 for more
information on another way to change multiple settings.

Example 7 — Specify JDBC Data Sources for Use by VQB

Instruct VQB to connect to the database using the data sources specified
in the file myjdbcdatsources.mat.

setdbprefs('JDBCDataSourceFile',...
'D:/Work/myjdbcdatasources.mat')

.

Example 8 — Assign Values to a Structure

1 Assign values for preferences to fields in the structure s.

s.DataReturnFormat = 'numeric';
s.NullNumberRead = '0';
s.TempDirForRegistryOutput = 'C:\Work'
s =

DataReturnFormat: 'numeric'
NullNumberRead: '0'

TempDirForRegistryOutput: 'C:\Work'

2 Set preferences using the values in s:

setdbprefs(s)

3 Runsetdbprefs to check your preferences settings:

setdbprefs

7-121

setdbprefs

DataReturnFormat: 'numeric'
ErrorHandling: 'store'

NullNumberRead: '0'
NullNumberWrite: 'NaN'
NullStringRead: 'null'

NullStringWrite: 'null'
JDBCDataSourceFile: ''

UseRegistryForSources: 'yes'
TempDirForRegistryOutput: 'C:\Work'

Example 9 — Return Values to a Structure

Assign values for all preferences to s by running:

s = setdbprefs
s =

DataReturnFormat: 'cellarray'
ErrorHandling: 'store'

NullNumberRead: 'NaN'
NullNumberWrite: 'NaN'
NullStringRead: 'null'

NullStringWrite: 'null'
JDBCDataSourceFile: ''

UseRegistryForSources: 'yes'
TempDirForRegistryOutput: ''

Now use the MATLAB tab completion feature when obtaining the value
for a preference. For example, enter:

s.U

Press the Tab key, and then Enter. MATLAB completes the field and
displays the value.

s.UseRegistryForSources

ans =

7-122

setdbprefs

yes

Example 10 — Save Preferences

You can save your preferences to a MAT-file to use them in future
MATLAB software sessions. For example, say that you need to reuse
preferences that you set for the Seasonal Smoothing project. Assign the
preferences to the variable SeasonalSmoothing and save them to a
MAT-file SeasonalSmoothingPrefs in your current folder:

SeasonalSmoothing = setdbprefs;
save SeasonalSmoothingPrefs.mat SeasonalSmoothing

At a later time, load the data and restore the preferences:

load SeasonalSmoothingPrefs.mat
setdbprefs(SeasonalSmoothing);

Example 11 — Access Existing JDBC Data Sources

Use the following command to access an existing JDBC data source in
future MATLAB software sessions:

setdbprefs('JDBCDataSourceFile','fullpathtomatfile')

For example, to use the data sources in the MAT-file
D:/Work/myjdbcdatasources.mat, run this command in the MATLAB
Command Window:

setdbprefs('JDBCDataSourceFile',...
'D:/Work/myjdbcdatasources.mat')

Tip Include this statement in a MATLAB startup file to access a
given JDBC data source automatically when your MATLAB software
session starts.

See Also clear, cursor.fetch, getdatasources, “Working with Preferences”
on page 4-6

7-123

sql2native

Purpose Convert JDBC SQL grammar to SQL grammar native to system

Syntax n = sql2native(conn, 'sqlquery')

Description n = sql2native(conn, 'sqlquery'), converts the SQL statement
string sqlquery from JDBC SQL grammar into the database system’s
native SQL grammar for the connection conn. The native SQL
statement is assigned to n.

7-124

supports

Purpose Detect whether property is supported by database metadata object

Syntax a = supports(dbmeta)
a = supports(dbmeta, 'property')
a.property

Description • a = supports(dbmeta) returns a structure that contains the
properties of dbmeta and its property values, 1 or 0. A value of 1
indicates that the property is supported, and 0 indicates that the
property is not supported.

• a = supports(dbmeta, 'property') returns 1 or 0 for the
property field of dbmeta. A value of 1 indicates that the property is
supported, and 0 indicates that the property is not supported.

• a.property returns the value of property after you have created
a using the supports function.

Examples 1 Check if dbmeta supports group-by clauses.

a = supports(dbmeta, 'GroupBy')
a =

1

2 View the value of all properties of dbmeta.

a = supports(dbmeta)

The returned result is a list of properties and their values.

3 See the value of the GroupBy property by running:

a.GroupBy
a =

1

See Also database, dmd, get, ping

7-125

tableprivileges

Purpose Return database table privileges

Syntax tp = tableprivileges(dbmeta, 'cata')
tp = tableprivileges(dbmeta, 'cata', 'sch')
tp = tableprivileges(dbmeta, 'cata', 'sch', 'tab')

Description • tp = tableprivileges(dbmeta, 'cata') returns a list of table
privileges for all tables in the catalog cata, for the database whose
database metadata object is dbmeta.

• tp = tableprivileges(dbmeta, 'cata', 'sch') returns a list of
table privileges for all tables in:

- The schema sch

- Of the catalog cata

- For the database whose database metadata object is dbmeta

• tp = tableprivileges(dbmeta, 'cata', 'sch', 'tab') returns
a list of privileges for:

- The table tab

- The schema sch

- Of the catalog cata

- For the database whose database metadata object is dbmeta

Examples Get table privileges for the builds table in the schema geck for the
catalog msdb, for the database metadata object dbmeta.

tp = tableprivileges(dbmeta,'msdb','geck', 'builds')
tp =

'DELETE' 'INSERT' 'REFERENCES' ...
'SELECT' 'UPDATE'

See Also dmd, get, tables

7-126

tables

Purpose Return database table names

Syntax t = tables(dbmeta, 'cata')
t = tables(dbmeta, 'cata', 'sch')

Description • t = tables(dbmeta, 'cata') returns a list of tables and table
types in the catalog cata, for the database whose database metadata
object is dbmeta.

• t = tables(dbmeta, 'cata', 'sch') returns a list of tables and
table types in:

- The schema sch

- Of the catalog cata

- For the database whose database metadata object is dbmeta

Tip For command-line help on tables, use the overloaded method:

help dmd/tables

Examples Get the table names and types for the schema SCOTT in the catalog
orcl, for the database metadata object dbmeta.

t = tables(dbmeta,'orcl', 'SCOTT')
t =

'BONUS' 'TABLE'
'DEPT' 'TABLE'
'EMP' 'TABLE'
'SALGRADE' 'TABLE'
'TRIAL' 'TABLE'

See Also attr, bestrowid, dmd, get, indexinfo, tableprivileges

7-127

unregister

Purpose Unload database driver

Syntax unregister(d)

Description unregister(d) unloads the database driver object d, freeing up system
resources. If you do not unload a registered driver, it automatically
unloads when you end your MATLAB software session.

Examples unregister(d) unloads the database driver object d.

See Also register

7-128

update

Purpose Replace data in database table with MATLAB data

Syntax update(conn, 'tab', colnames, exdata, 'whereclause')

update(conn, 'tab', colnames, ...

{datA,datAA, ...; datB,datBB, ...; datn, datNN}, ...

{'where col1 = val1'; where col2 = val2'; ... 'where coln = valn'}

Description update(conn, 'tab', colnames, exdata, 'whereclause') exports
the MATLAB variable exdata in its current format into the database
table tab using the database connection conn.exdata can be a cell
array, numeric matrix, or structure. Existing records in the database
table are replaced as specified by the SQL whereclause command.

Specify column names for tab as strings in the MATLAB cell array
colnames. If exdata is a structure, field names in the structure must
exactly match field names in colnames.

The status of the AutoCommit flag determines whether update
automatically commits the data to the database. View the AutoCommit
flag status for the connection using get and change it using set.
Commit the data by running commit or a SQL commit statement via
the exec function. Roll back the data by runningrollback or a SQL
rollback statement via the exec function.

To add new rows instead of replacing existing data, use fastinsert.

update(conn, 'tab', colnames, {datA, datAA, ...; datB,
datBB, ...; datn,datNN}, {'where col1 = val1'; where col2 =
val2'; ... 'where coln = valn'}) exports multiple records for n
where clauses. The number of records in exdata must equal n.

Remarks • The order of records in your database is not constant. Use values of
column names to identify records.

• An error like the following may appear if your database table is
open in edit mode:

[Vendor][ODBC Product Driver] The database engine could
not lock table 'TableName' because it is already in use

7-129

update

by another person or process.

In this case, close the table and repeat the update function.

• An error like the following may appear if you try to run an update
operation that is identical to one that you just ran:

??? Error using ==> database.update
Error:Commit/Rollback Problems

Examples Example 1 — Update an Existing Record

Update the record in the Birthdays table using the database connection
conn, where First_Name is Jean, replacing the current value for Age
with 40.

1 First define a cell array containing the column name that you are
updating, Age.

colnames = {'Age'}

2 Define a cell array containing the new data, 40.

exdata(1,1) = {40}

3 Run the update.

update(conn, 'Birthdays', colnames, exdata, ...
'where First_Name = ''Jean''')

7-130

update

Example 2 — Roll Back Data after Updating a Record

Update the column Date in the Error_Rate table for the record selected
by whereclause, using data contained in the cell array exdata. The
AutoCommit flag is off. The data is rolled back after the update
operation is run.

1 Set the AutoCommit flag to off for database connection conn.

set(conn, 'AutoCommit', 'off')

2 Update the Date column.

update(conn, 'Error_Rate', {'Date'}, exdata, whereclause)

3 Because the data was not committed, you can roll it back.

rollback(conn)

The update is reversed; the data in the table is the same as it was
before you ran update.

Example 3 — Update Multiple Records with Different
Constraints

Given the table TeamLeagues, where column names are 'Team',
'Zip_Code', and 'New_League':

'Team1' 02116
'Team2' 02138
'Team3' 02116

Assign teams with a zip code of 02116 to the A league and teams with a
zip code of 02138 to the B league:

update(conn, 'TeamLeagues', {'League'}, {'A';'B'}, ...
{'where Zip_Code =''02116''';'where Zip_Code =''02138'''})

See Also commit, database, fastinsert, rollback, set

7-131

versioncolumns

Purpose Automatically update table columns

Syntax vl = versioncolumns(dbmeta, 'cata')
vl = versioncolumns(dbmeta, 'cata', 'sch')
vl = versioncolumns(dbmeta, 'cata', 'sch', 'tab')

Description • vl = versioncolumns(dbmeta, 'cata') returns a list of columns
that automatically update when a row value updates in the catalog
cata, in the database whose database metadata object is dbmeta.

• vl = versioncolumns(dbmeta, 'cata', 'sch') returns a list of
all columns that automatically update when a row value updates in:

- The schema sch

- In the catalog cata

- For the database whose database metadata object is dbmeta

• vl = versioncolumns(dbmeta, 'cata', 'sch', 'tab') returns a
list of columns that automatically update when a row value updates
in:

- The table tab

- The schema sch

- In the catalog cata

- For the database whose database metadata object is dbmeta

Examples Get a list of which columns automatically update when a row in the
table BONUS updates, in the schema SCOTT, in the catalog orcl, for the
database metadata object dbmeta.

vl = versioncolumns(dbmeta,'orcl','SCOTT','BONUS')
vl =

{}

The results are an empty set, indicating that no columns in the database
automatically update when a row value updates.

7-132

versioncolumns

See Also columns, dmd, get

7-133

width

Purpose Return field size of column in fetched data set

Syntax colsize = width(cursor, colnum)

Description colsize = width(cursor, colnum) returns the field size of the
specified column number colnum in the fetched data set curs.

Examples Get the width of the first column of the fetched data set, curs:

colsize = width(curs, 1)

colsize =

11

The field size of column one is 11 characters (bytes).

See Also attr, cols, columnnames, cursor.fetch, get

7-134

A

Examples

Use this list to find examples in the documentation.

A Examples

Visual Query Builder GUI: Importing Data
“Working with Preferences” on page 4-6
“Retrieving All Occurrences vs. Unique Occurrences of Data” on page 4-22
“Retrieving Data That Meets Specified Criteria” on page 4-24
“Creating Subqueries for Values from Multiple Tables” on page 4-37
“Creating Queries That Include Results from Multiple Tables” on page 4-42
“Retrieving BINARY and OTHER Sun Java Data Types” on page 4-46
“Importing BOOLEAN Data from Databases to the MATLAB Workspace”
on page 4-48

Visual Query Builder GUI: Displaying Results
“Displaying Data Relationally” on page 4-10
“Charting Query Results” on page 4-14
“Displaying Query Results in an HTML Report” on page 4-16
“Using the MATLAB® Report Generator Software to Customize Display of
Query Results” on page 4-17
“Displaying Results in a Specified Order” on page 4-31

Visual Query Builder GUI: Advanced Query Options
“Example: Using Having Clauses” on page 4-36

Visual Query Builder GUI: Exporting Data
“Exporting BOOLEAN Data from the MATLAB Workspace to Databases”
on page 4-51

Using Database Toolbox Functions
“Importing Data from Databases into the MATLABWorkspace” on page 5-3

A-2

Using Database Toolbox Functions

“Viewing Information About Imported Data” on page 5-9
“Exporting Data from the MATLAB Workspace to a New Record in a
Database” on page 5-11
“Replacing Existing Data in Databases with Data Exported from the
MATLAB Workspace” on page 5-15
“Exporting Multiple Records from the MATLAB Workspace” on page 5-17
“Retrieving BINARY or OTHER Sun Java SQL Data Types” on page 5-21
“Working with Database Metadata” on page 5-23
“Using Driver Functions” on page 5-29

A-3

A Examples

A-4

Index

IndexA
advanced query options in VQB 4-22
All option in VQB 4-22
array

data format 7-109
arrays

data format in VQB 4-8
attr 7-2

example 5-10
Attributes 7-60
attributes of data

attr function 7-2
example 5-10

AutoCommit
example 5-13
setting status 7-103
status via get 7-59

B
bestrowid 7-5
BINARY data types

retrieving with functions 5-21
retrieving with VQB 4-46

BOOLEAN data type
inserting 7-52
retrieving 7-25
VQB 4-48

C
catalog

changing 7-41
Catalog 7-59
CatalogName 7-63
cell arrays

assigning values to cells 5-12
data format 7-109
for exporting data 5-12
for query results 5-6

setting data format in VQB 4-6
charting

query results 4-14
Charting dialog box 4-14

data (x, y, z, and color) 4-15
legends 4-15
preview 4-15

clearwarnings 7-6
close 7-7
cols 7-9

example 5-9
ColumnCount 7-63
ColumnName 7-63
columnnames 7-10

exporting example 5-18
importing example 5-9

columnprivileges 7-11
columns 7-13

attributes 5-10
automatically updated 7-132
cross reference 7-18
exported keys 7-45
foreign key information 7-67
imported key information 7-67
names, exporting 5-12
names, importing 5-9
names, via attr 7-2
names, via columnnames 7-10
names, via columns 7-13
number 7-9
optimal set to identify row 7-5
primary key information 7-86
privileges 7-11
viewing width 5-10
width 7-134

ColumnTypeName 7-63
columnWidth 7-2
commit 7-15

example 5-13
via exec 7-40

Index-1

Index

Condition in VQB 4-24
confds

function reference 7-16
Configure Data Source dialog box 7-16
connection

clearing warnings for 7-6
close function 7-7
creating 7-26
database, opening (establishing) 7-26
database, opening (establishing),

example 5-3
information 7-84
JDBC 7-59
messages 7-59
object 5-3
opening 7-26
properties, getting 7-57
properties, setting 7-102
read-only 7-78
status 7-84
status, example 5-5
time allowed for 7-80
time allowed for, example 5-3
validity 7-73
warnings 7-59

constructor functions 5-31
crossreference 7-18
currency 7-2
Current clauses area in VQB

example 4-25
cursor

attributes 7-60
close function 7-7
creating via exec 7-37
creating via fetch 7-21
data element 7-60
error messages 7-60
importing data 5-6
object 7-21
objects

example 5-5
opening 5-5
properties 7-102
properties, example 7-57
resultset object 7-96

Cursor 7-60
cursor.fetch 7-21

example 5-6
relative to fetch 7-53

D
data

attributes 7-2
example 5-10

cell array 5-12
column names 7-10

example 5-9
column numbers 7-9

example 5-9
commit function 7-15
committing 7-103
displaying results in VQB 4-10
exporting 7-48 7-72
exporting, example 5-13
field names 7-10
importing 7-21
importing, example 5-6
information about 5-9
inserting into database 5-20
replacing 5-15
rolling back 7-97
rolling back, via set 7-103
rows 5-9
rows function 7-98
unique occurrences of 4-22
updating 7-129

Data 7-60
data format 7-109

Database Toolbox 4-8

Index-2

Index

preferences for retrieval 7-109
preferences in VQB 4-6

data sources
defining

JDBC 7-16
for connection 7-26
JDBC

accessing 2-4
modifying 2-5
removing 2-6
updating 2-5

ODBC connection 7-59
ODBC, on system 7-66

data types 7-2
BINARY, retrieving with functions 5-21
BINARY, retrieving with VQB 4-46
OTHER, retrieving with functions 5-21
OTHER, retrieving with VQB 4-46
supported 1-4

database
connecting to 7-26
connecting to, example 5-3
example 5-3
JDBC connection 7-59
metadata objects

creating 7-34
properties 7-57
properties supported 7-125

name 7-26
supported 1-2
URL 7-27

Database Toolbox
relationship of functions to VQB 3-1

Database Toolbox requirements 1-2
database.fetch 7-31

relative to fetch 7-53
database/fetch 7-53
DatabaseObject 7-60
dbdemos 5-1

demos 5-1
dbinfodemo 5-9
dbinsertdemo 5-11
dbupdatedemo 5-15

displaying
query results

as chart 4-14
as report 4-16
in MATLAB Report Generator

software 4-17
relationally 4-10

Distinct option in VQB 4-22
dmd 7-34

example 5-23
dotted line in display of results 4-12
driver 7-35

example 5-29
object in get function 7-59

driver objects
functions 6-6
functions, example 5-29
properties 5-29

drivermanager 7-36
drivermanager objects

example 5-29
properties 7-102
properties, via get 7-57

drivers
JDBC 1-3 7-27

troubleshooting 2-7
JDBC compliance 7-75
loading 7-95
ODBC 1-3
properties 7-57
properties, drivermanager 7-36
supported 1-3
unloading 7-128
validity 7-74

Drivers 7-62

Index-3

Index

E
editing clauses in VQB 4-26
empty field 5-21
error

messages
cursor object 7-60
database connection object 7-59
modifying database 7-37

error handling
preferences 4-6

error notification, preferences 7-109
examples

using functions 5-1
exec 7-37

example 5-5
with fetch 7-31

executing queries 7-37
exportedkeys 7-45
exporting data

cell arrays 5-12
inserting 7-48 7-72

example 5-11
multiple records 5-20

replacing 7-129
replacing, example 5-15

F
fastinsert 7-48

example 5-13
fetch 7-53

cursor 7-21
database 7-31

Fetch 7-60
fetchmulti 7-55
fieldName 7-2
fields

names 7-13
size (width) 7-2

example 5-10

width 7-134
foreign key information

crossreference 7-18
exportedkeys 7-45
importedkeys 7-67

format for data retrieved, preferences 7-109
freeing up resources 7-7
functions

equivalent to VQB queries 4-52
when to use 3-3

G
get 5-30 7-57

AutoCommit status 5-13
properties 5-29

getdatasources 7-66
grouping statements 4-27

removing 4-31

H
Handle 7-59
Having Clauses dialog box 4-34
Having in VQB 4-34
HTML report of query results 4-16

MATLAB Report Generator software 4-17

I
images

importing 5-21
VQB 4-46

importedkeys 7-67
importing data

data types
BINARY and OTHER using functions 5-21
BINARY and OTHER using VQB 4-46

empty field 5-21
using functions 7-21

example 5-3

Index-4

Index

index for resultset column 7-83
indexinfo 7-70
insert 7-72
inserting data into database 5-20
Instance 7-59
isconnection 7-73
isdriver 5-30 7-74
isjdbc 7-75
isNullable 7-63
isnullcolumn 7-76
isreadonly 7-78
isReadOnly 7-63
isurl 7-79

J
Java™ Database Connectivity. See JDBC
JDBC

compliance 7-75
connection object 7-59
driver instance 7-59
driver name 7-27
drivers

names 7-27
supported 1-3
validity 7-74

MAT-file location preference 7-109
SQL conversion to native grammar 7-124
URL 7-27

via get 7-59
join operation in VQB 4-42

L
legends

in chart 4-15
labels in chart 4-15

logical data types
inserting 7-52
retrieving 7-25

VQB 4-48
logintimeout 7-80

example 5-3
Macintosh platform support 7-80

LoginTimeout
Database connection object 7-59
Drivermanager objects 7-62
example 5-30

LogStream 7-62

M
M-files 5-1

generated from VQB 4-52
MajorVersion 7-61
MATLAB Report Generator software

display of query results 4-17
memory problems

RowInc solution 7-31
RowLimit solution 7-21

Message
attr 7-2
cursor object 7-60
database connection object 7-59

metadata objects
database 7-34

example 5-23
resultset 7-99
resultset functions 5-28

methods 5-31
MinorVersion 7-61

N
namecolumn 7-83
nested SQL 4-37
NULL values

detecting in imported record 7-76
function for handling 4-9
preferences for reading and writing 4-6

Index-5

Index

reading from database 5-17
representation in results 4-8
setdbprefs 7-109
writing to database 4-6

nullable 7-2
numeric data format 7-109

VQB 4-6

O
objects 5-31

creating 5-31
properties, getting 7-57

ObjectType 7-59
ODBC

data sources on system 7-66
drivers 1-3

Open Database Connectivity. See ODBC
Operator in VQB 4-26
Order By Clauses dialog box 4-32
Order by option in VQB 4-31
OTHER data types

retrieving with functions 5-21
retrieving with VQB 4-46

P
parentheses, adding to statements 4-27
password 7-26 to 7-27
ping 7-84

AutoCommit 5-13
example 5-5

platforms 1-2
precision 7-2
preferences

for Visual Query Builder 4-6
primary key information 7-18
primarykeys 7-86
privileges

columns 7-11

tables 7-126
procedurecolumns 7-88
procedures 7-91
properties

database metadata objects 7-125
example 5-24

drivers 5-29
getting 7-57
setting 7-102

Q
queries

accessing subqueries in multiple tables 4-37
accessing values in multiple tables 4-42
displaying results

as chart 4-14
as report 4-16
in MATLAB Report Generator

software 4-17
relationally 4-10

ordering results 4-31
refining 4-24
results 7-60
running via exec 7-37

querybuilder 7-93
querytimeout 7-94
quotation marks

in table and column names 1-6

R
readonly 7-2
ReadOnly 7-59
refining queries 4-24
register 7-95
Relation in VQB 4-24
relational display of query results 4-10
replacing data 5-15

update function 7-129

Index-6

Index

reporting query results
MATLAB Report Generator software 4-17
table 4-16

reserved words
in table and column names 1-6

resultset 7-96
clearing warnings for 7-6
closing 7-7
column name and index 7-83
metadata objects 5-28

creating 7-99
properties 7-57

object, functions 6-6
properties 7-57

ResultSet 7-60
retrieving data

restrictions 1-6
rollback 7-97
RowInc

database.fetch 7-31
RowLimit

fetch 7-21
get 7-60
set 7-104

rows 7-98
example 5-9
uniquely identifying 7-5

rsmd 7-99
runstoredprocedure 7-100

S
scale 7-2
selecting data from database 7-39
set 7-102

example 5-30
setdbprefs 7-109

example 5-17
VQB 4-9

size 5-19

size of field 5-10
Sort key number in VQB 4-32
Sort order in VQB 4-32
spaces

in table and column names 1-6
speed

inserting data 7-48
SQL

commands 1-3
conversion to native grammar 7-124
join in VQB 4-42
statement

executing 7-37
in exec 7-60
in exec, example 5-5
in VQB 4-26

time allowed for query 7-94
where clause 7-129

example 5-15
where clause in exec 5-15

sql2native 7-124
SQLQuery 7-60
Statement 7-60
status of connection 7-84

example 5-5
stored procedures

in catalog or schema 7-91
information 7-88
running 7-41

string and numeric data format 7-109
strings

within strings 5-15
structure data format 7-109

VQB 4-6
subqueries

in VQB 4-37
Subquery dialog box 4-38
supports 7-125

example 5-26
system requirements 1-2

Index-7

Index

T
table

creating
using exec 7-41

TableName 7-63
tableprivileges 7-126
tables 7-127

example 5-28
index information 7-70
names 7-127
privileges 7-126
selecting multiple for VQB 4-43

time
allowed for connection 7-80
allowed for SQL query 7-94

TimeOut 7-59
TransactionIsolation 7-59
Type 7-60
typeName 7-2
typeValue 7-2

U
undoing exported data update 5-13
ungrouping statements 4-31
unique occurrences of data 4-22
unregister 7-128
update 7-129

example 5-15
URL 7-59

JDBC database connection 7-27
validity 7-79

user name 7-26 to 7-27 7-59

V
versioncolumns 7-132
Visual Query Builder

advanced query options 4-22
equivalent Database Toolbox functions 4-52
getting started 4-2
limitations 3-2
starting 7-93
steps to export (insert) data 4-4
steps to import (retrieve) data 4-2
when to use 3-2

VQB. See Visual Query Builder

W
Warnings 7-59
warnings, clearing 7-6
where clause 7-129

example 5-15
WHERE Clauses dialog box 4-24
Where option in VQB 4-24
width 7-134

example 5-10
writable 7-59

Index-8

	toc
	Before You Begin
	Working with Databases
	Connecting to Databases
	Supported Platforms
	Supported Databases
	Supported Drivers
	Structured Query Language (SQL)

	Supported Data Types
	Data Retrieval Restrictions
	Spaces in Table Names or Column Names
	Quotation Marks in Table Names or Column Names
	Reserved Words in Column Names

	Working with Data Sources
	Setting up ODBC Data Sources
	Setting up JDBC Data Sources
	Accessing Existing JDBC Data Sources
	Modifying Existing JDBC Data Sources
	Removing JDBC Data Sources
	Troubleshooting JDBC Driver Problems

	Database Toolbox Functions vs. Visual Query Builder
	When to Use Visual Query Builder
	Tasks You Can Perform Using Visual Query Builder
	Limitations of Visual Query Builder

	When to Use Database Toolbox Functions

	Using Visual Query Builder
	Getting Started with Visual Query Builder
	What Is Visual Query Builder?
	Using Queries to Import Data
	Using Queries to Export Data

	Working with Preferences
	Specifying Preferences
	Saving Preferences

	Displaying Query Results
	How to Display Query Results
	Displaying Data Relationally
	Charting Query Results
	Displaying Query Results in an HTML Report
	Using the MATLAB Report Generator Software to Customize Display

	Fine-Tuning Queries Using Advanced Query Options
	Retrieving All Occurrences vs. Unique Occurrences of Data
	Retrieving Data That Meets Specified Criteria
	Grouping Statements
	Removing Grouping of Statements

	Displaying Results in a Specified Order
	Using Having Clauses To Refine Group By Results
	Using the HAVING Clauses Dialog Box
	Example: Using Having Clauses

	Creating Subqueries for Values from Multiple Tables
	Creating Queries That Include Results from Multiple Tables
	Additional Advanced Query Options

	Retrieving BINARY and OTHER Sun Java Data Types
	Importing and Exporting BOOLEAN Data
	Importing BOOLEAN Data from Databases to the MATLAB Workspace
	Exporting BOOLEAN Data from the MATLAB Workspace to Databases

	Saving Queries in M-Files
	About Generated M-Files
	VQB Query Elements in M-Files

	Using Database Toolbox Functions
	Getting Started with Database Toolbox Functions
	Importing Data from Databases into the MATLAB Workspace
	Viewing Information About Imported Data
	Exporting Data from the MATLAB Workspace to a New Record in a Da
	Replacing Existing Data in Databases with Data Exported from the
	Exporting Multiple Records from the MATLAB Workspace
	Retrieving BINARY or OTHER Sun Java SQL Data Types
	Working with Database Metadata
	Accessing Metadata
	Resultset Metadata Objects

	Using Driver Functions
	About Objects and Methods in the Database Toolbox Software

	Function Reference
	Utilities
	Database Connection
	SQL Cursor
	Data Import
	Database Metadata Object
	Data Export
	Driver Object
	Drivermanager Object
	Resultset Object
	Resultset Metadata Object
	Visual Query Builder

	Functions — Alphabetical List
	Example 3 — Import Rows Iteratively until You Retrieve All Data
	Example 4 — Import Numeric Data
	Example 5 — Import BOOLEAN Data
	Example 2— Import Two Columns of Data and View Information
	Examples
	Driver Objects
	Database Metadata Objects
	Drivermanager Objects
	Resultset Objects
	Resultset Metadata Objects
	Example 1 — Get Connection Property and Data Source Name
	Example 2 — Get Connection Property and AutoCommit Flag Status
	Example 3 — Display Data in Cursor
	Example 4 — Get Database Metadata Object Properties
	Example 3 — Set the AutoCommit Flag to Off and Commit Data

	Examples
	Visual Query Builder GUI: Importing Data
	Visual Query Builder GUI: Displaying Results
	Visual Query Builder GUI: Advanced Query Options
	Visual Query Builder GUI: Exporting Data
	Using Database Toolbox Functions

	Index

	tables
	JDBC Name and URL Example Syntax
	DataReturnFormat and ErrorHandling Properties and Values for set
	Null Data Handling Properties and Values for setdbprefs
	Other Properties and Values for setdbprefs (Not Accessible via Q

